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Analysis of Composite Materials— 
A Survey 
The purpose of the present survey is to review the analysis of composite materials 

from the applied mechanics and engineering science point of view. The subjects 
under consideration will be analysis of the following properties of various kinds of 
composite materials: elasticity, thermal expansion, moisture swelling, 
viscoelasticity, conductivity (which includes, by mathematical analogy, dielectrics, 
magnetics, and diffusion) static strength, and fatigue failure. 

"Where order in variety we see 
And where, though all things differ, all agree' 

Alexander Pope 

1 Introduction 
Composite materials consist of two or more different 

materials that form regions large enough to be regarded as 
continua and which are usually firmly bonded together at the 
interface. Many natural and artificial materials are of this 
nature, such as: reinforced rubber, filled polymers, mortar 
and concrete, alloys, porous and cracked media, aligned and 
chopped fiber composites, polycrystalline aggregates (metals), 
etc. 

Analytical determination of the properties of composite 
materials originates with some of the most illustrious names 
in science. J. C. Maxwell in 1873 and Lord Rayleigh in 1892 
computed the effective conductivity of composites consisting 
of a matrix and certain distributions of spherical particles (see 
Part 6). Analysis of mechanical properties apparently 
originated with a famous paper by Albert Einstein in 1906 in 
which he computed the effective viscosity of a fluid con
taining a small amount of rigid spherical particles. Until 
about 1960, work was primarily concerned with 
macroscopically isotropic composites, in particular, 
matrix/particle composites and also polycrystalline 
aggregates. During this period the primary motivation was 
scientific. While the composite materials investigated were of 
technological importance, a technology of composite 
materials did not as yet exist. Such a technology began to 
emerge about 1960 with the advent of modern fiber com
posites consisting of very stiff and strong aligned fibers (glass, 
boron, carbon, graphite) in a polymeric matrix and later also 
in a light weight metal matrix. 

The engineering significance of reliable analysis of 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, February, 1983. 

properties is quite different for particulate composites and for 
fiber composites. For the former, such capability is desirable, 
while for the latter it is crucial. The reason is that the range of 
realizable properties and the ability to control the internal 
geometry are quite different in the two cases. For example: 
the effective Young's modulus of an isotropic composite 
consisting of matrix and very much stiffer and stronger 
spherical type particles will depend primarily on volume 
fractions and can be increased in practice only up to about 
four-five times the matrix modulus. The strength of such a 
composite is only of the order of the matrix strength and may 
even be lower. The effect of stiffening and strengthening 
increases if particles have elongated shapes but at the price of 
lowering the maximum attainable particle volume fraction. 

A unidirectional fiber composite is highly anisotropic and 
therefore has many more stiffness and strength parameters 
than a particulate composite. Stiffness and strength in the 
fiber direction are of fiber value order, and thus very high. 
Stiffnesses and strengths transverse to the fiber direction are 
of matrix order, similar to those of a particulate composite, 
and thus much lower. Carbon and graphite are themselves 
significantly anisotropic, their elastic properties being defined 
by five numbers instead of the usual two for an isotropic 
material. Furthermore, matrix properties may be strongly 
influenced by environmental changes such as heating, 
cooling, and moisture absorption. All of this creates an 
enormous variety of properties, of much wider range than for 
a particulate composite. 

The generally low values of stiffness and strength trans
versely to the fibers provide the motivation for laminate 
construction consisting of thin unidirectional layers with 
different reinforcement directions. The laminates are formed 
into laminated structures. The layer thicknesses, fiber 
directions, choice of fibers, and matrix are at the designers 
disposal and should, ideally, be chosen from the point of view 
of optimization of an important quantity such as weight or 
price. The design of such structures is an integrated process 
leading from constituents to structure in the sequence: 
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FIBERS AND MATRIX - UNIDIRECTIONAL COM
POSITE - LAMINATE - LAMINATED STRUCTURE. 

Traditionally, material properties have been obtained by 
experiment and material improvement has been achieved 
empirically and qualitatively. The structural designer had at 
his disposal a limited number of material options provided by 
the materials developer. This situation is entirely different for 
fiber composite structures. The only constituents that are 
materials in the traditional sense are fibers and matrix. 
Everything following in the sequence, including the 
unidirectional material, is of such immense variety that 
analysis, rather than experimentation, is the practical 
procedure to obtain properties. Thus, the relevant methods 
are those of applied mechanics rather than those of materials 
science. 

The purpose of the present survey is to present analysis of 
composite materials from the applied mechanics and 
engineering science point of view, and thus as a subject that is 
based on principles and rational methods and not on em
piricism and speculation. The subjects under consideration 
will be analysis of the following properties of various kinds of 
composite materials: elasticity, thermal expansion, moisture 
swelling, viscoelasticity, conductivity (which includes, by 
mathematical analogy, dielectrics, magnetics, and diffusion) 
static strength, and fatigue failure. Relevant comprehensive 
literature expositions are Hashin [1] and Christensen [2] 
which will be referred to frequently. Important subject 
omissions are elastodynamic behavior and plasticity, this for 
reasons of space limitation. Surveys of these subjects may be 
found in [2]. Analysis of laminates is not included since this is 
a well understood subject and it has been described in several 
textbooks, except for the problem of laminate failure which 
will be briefly discussed. 

2 General Considerations 

There are two kinds of information that determine the 
properties of a composite material: the internal phase 
geometry, i.e., the phase interface geometry and the physical 
properties of the phases, i.e., their constitutive relations. Of 
these, the former is far more difficult to classify than the 
latter. In reality the internal geometry of every composite 
material is to a certain extent random. In a general two phase 
material (for reasons of simplicity the discussion will be 
concerned with two phases. The case of more phases will only 
be considered as needed) the phase regions are of arbitrary 
unspecified shapes. When one phase is in the form of particles 
embedded in the second matrix phase the material is called a 
particulate composite. The internal geometry may be three or 
two dimensional. The latter case implies cylindrical specimens 
where each cross section has the same plane geometry. If 
nothing else is specified this is called a. fibrous material, which 
is the two-dimensional case of a general two phase material. 
The two-dimensional analogue of a particulate composite is a 
fiber composite, the particles being aligned cylinders. 

It is necessary to explain what is meant by a composite 
material in distinction from a composite body. In the former 
it is possible to define representative volume elements (RVE) 
Fig. 1, which are large compared to typical phase region 
dimensions (e.g., fiber diameters and spacings). From a 
practical point of view, a necessary characteristic of a 
composite material is statistical homogeneity (SH). A strict 
statistical definition of this concept must be expressed in 
terms of n-point probabilities and ensemble averages, see e.g., 
[3, 4]. Suffice it to say for present purposes that in a SH 
composite all global geometrical characteristics such as 
volume fractions, two-point correlations, etc. are the same in 
any RVE, irrespective of its position. 

The effective properties of a composite material define the 
relations between averages of field variables such as stress and 

Fig. 1 Representative volume element 

strain when their space variation is statistically homogeneous. 
For a strict definition of statistical homogeneity of such fields 
the reader is again referred to [4]. It may be said, somewhat 
loosely, that statistically homogeneous fields are statistically 
indistinguishable within different RVE in a heterogeneous 
body. By this is implied that their statistical moments such as 
average, variance, etc. are the same when taken over any RVE 
within the heterogeneous body. In particular, statistical 
homogeneity implies that body averages and RVE averages 
are the same. 

To produce a SH field in a composite it is expedient to 
apply boundary conditions that produce homogeneous fields 
in an homogeneous body. Such boundary conditions will 
consequently be called homogeneous (not to be confused with 
the concept of homogeneous boundary conditions in the 
theory of differential equations). For elastic bodies, 
homogeneous boundary conditions are either one of 

Ui{S)=e%Xj (a) Ti{S)=4nj (b) (2.1) 
where e$ are constant strains and cr°- are constant stresses. 

For heat (of electrical) conduction such boundary con
ditions are 

*>(S) =-//?*,- (a) qn(S)=q»ini (b) (2.2) 

where <p is temperature or potential, Hj are constants 
(components of gradient), q° are constant fluxes, and q„ is the 
normal flux component. Other cases of homogeneous 
boundary conditions will be given as needed. 

The fundamental postulate of the theory of (elastic) 
heterogeneous media states, Hashin [1]: "The stress and 
strain fields in a large SH heterogeneous body subjected to 
homogeneous boundary conditions are SH, except in a 
boundary layer near the external surface." The postulate 
applies in obvious fashion to other physical properties. 

The effective elastic properties are defined by the linearity 
relations 

ou = CfJkieki (a) eij = Stjkrok, (b) (2.3) 
where C,*w are effective elastic moduli and S*Jki are effective 
elastic compliances, connected by the usual reciprocity 
relation and having the usual symmetries, and overbars 
denote here and from now on, averages over RVE. When 
(2.1a) is prescribed, it follows by the average strain theorem, 
[1], that ey = ey. Thus to determine Cfjk, the average stress ay 
must be computed subject to (2.1a). Conversely, when (2.lb) 
is prescribed, then from the average stress theorem, [1], 
ay — ay. Thus to find Syk/ the average strain ly must be 
computed subject to (2.1b). 
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Everything is analogous for conductivity. The effective 
conductivity tensor jtj and the effective resistivity tensor p,* 
are defined by 

q, = rtHj H,=p*qj (2.4) 

where H, = — <ph The tensors /nj and pfj are reciprocal and are 
determined analogously to effective elastic properties. The 
averages Ht and qs are given by Iff and q<j in (2.2) from 
conductivity average theorems, [1]. 

The computation of effective properties in terms of 
averages will be called the direct approach. In general it 
requires determination of the appropriate fields in the phases 
as defined by the field equations, interface continuity con
ditions, and external homogeneous boundary conditions, in 
order to compute the required averages. The interface con
ditions are, for solid mechanics, 

«J1) = «P>; 7T> = 7 p on Sl2 (2.5) 

and for conductivity 

^ ) = v 0 ) ; qM=q«> on Sl2 (2.6) 

It follows that effective physical properties are in general 
functions of all the details of the constituent interface 
geometry. Actual direct computation is an extremely difficult 
problem, primarily because of the necessity to satisfy (2.5) or 
(2.6), and it must be restricted to simple models not only 
because of mathematical difficulties but also because the 
actual details of the interface geometry are never known. 

An alternative definition of effective physical properties 
can be given in terms of energy expressions. This is based on 
the average theorem of virtual work, [1], which when 
specialized to heterogeneous elastic bodies with homogeneous 
boundary conditions states 

U*=^C*ulcleuSklV=W*V (a) 

(2.7) 

U'=^StJuauaklV=WV (6) 

where t/e is strain energy, U" is stress energy (this replaces the 
expression strain energy in terms of stresses), Kis the volume, 
W is elastic energy per unit volume RVE, equation (2.7a) is 
associated with (2. la), and {2.1b) is associated with {2Ab). 

Similarly for conduction with homogeneous boundary 
conditions 

QH=l-tfjHiHJV (a) 

(2.8) 

Q,= \plqiqJV (b) 

where Q is \/2\qj(\)Hi{x)dV, are associated with (2.2 a,b), 
respectively. 

It is of interest to note that in the early stages of the theory 
of composite materials, effective elastic moduli were defined 
in terms of energy by expressions of type (2.7), following 
Einstein's pioneering paper on viscosity of dilute suspensions, 
[5]. The equivalence of the average and energy definitions of 
effective elastic moduli (2.3) and (2.7) was apparently only 
recognized in 1963, independently, by Hill [6] and by Hashin 
[3], On the other hand, early work on effective conductivity 
employed the average definition (2.4). 

The primary importance of (2.8) is in that such energy 
expressions can be bounded from above and below by ex-
tremum principles. Bounding requires construction of ad
missible fields that are much easier to construct than actual 
solutions. By judicious choice of boundary conditions, energy 
expressions can be expressed in terms of a single property, 
e.g., effective elastic modulus. Bounding of strain energy 
yields an upper bound on effective modulus. Bounding of 
stress energy yields an upper bound on the effective com

pliance, and thus on the reciprocal of the effective modulus, 
and consequently a lower bound on the effective modulus. 
Similar considerations apply for conduction. 

Everything said so far has merely been concerned with 
effective properties. In the context of homogeneous media the 
analogous subject would be homogeneous material 
properties, which are of course measured in the laboratory 
using specimens with internal homogeneous fields. Indeed 
equations (2.3), (2.4), (2.7), and (2.8) have completely 
analogous homogeneous material counterparts in terms of 
field quantities "at a point." The question that now arises is: 
what is a suitable macrodescription of a heterogeneous 
material body when it is subjected to arbitrary boundary 
conditions and thus the internal fields are no longer 
statistically homogeneous? It is instructive to recall how this 
problem is resolved in the case of "homogeneous" continua. 
It is always assumed that such continua retain their properties 
regardless of specimen size, thus also for infinitesimal 
elements. This permits establishment of field equations in 
terms of field derivatives. However, all real materials have 
microstructure. Metals, for example, are actually 
polycrystalline aggregates and are thus heterogeneous 
materials. Therefore the differential element of the theory of 
elasticity is in reality a RVE, which is composed of a suf
ficiently large number of crystals, and whose effective elastic 
moduli are the elastic moduli of the theory of elasticity. Since 
the RVE is not infinitesimal it emerges that the classical 
theory of elasticity is an approximation that results in a 
macrodescription of a polycrystalline aggregate when the 
RVE size is "sufficiently small" in relation to the body 
dimensions. 

The simplest point of view would be to adopt the same 
approximation for a composite material body. This would 
imply that the classical field equations of elasticity, con
ductivity, or other are assumed valid for the composite 
material body with effective properties replacing the usual 
homogeneous properties. Such an approach may be called the 
classical approximation and will now be discussed within the 
frame of more general theory. It is first necessary to define 
appropriate field variables for construction of field equations 
which are to describe a composite material as some equivalent 
continuum. The usual choice is moving averages over RVE or 
ensemble averages. A moving average of a function, e.g., 
displacement, is defined as 

«,-(x) = —jw/ (x ,x ' ) c fo ' (2.9) 

where x is a position vector to a reference point in the RVE 
(e.g., centroid) defining its location, x\ is a local coordinate 
system originating at x (Fig. 1) and the integration is over 
RVE. 

The moving average concept is tied to the concept of 
geometrical scaling of a composite material which is in
dispensable for its representation as some equivalent con
tinuum. The typical dimensions of phase regions, e.g., 
particle diameters, single crystal dimensions, are defined as 
the MICRO scale. The dimensions of the RVE are defined as 
the MINI scale and the dimensions of the composite material 
body as the MACRO scale. The equivalent continuum is a 
meaningful representation of a heterogeneous body only if 

MICRO < < MINI < < MACRO (2.10) 

This will be referred to as the MMMprinciple. Displacements 
w/(x,x'), strains e,y(x,x'), and stresses a-j(x,x) within the 
phases are called microvariables while moving averages 
should by the same token be called minivariables. Ac
cordingly computation of effective physical properties on the 
basis of phase geometry is frequently called micromechanics. 
It has been suggested that analysis of a composite as if it were 
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some continuum, thus in terms of minivariables, should be 
called minimechanics, [7]. 

It is easily shown that moving averaging and differentiation 
are commutative (see e.g., [1]). Thus for example 

This leads at once to the conclusion that 

7lMrJ) = eiJ{x) (2.12) 

Another point of view is based on the ensemble average. 
This average is based on the concept of an ensemble of 
composite specimens that have certain common charac
teristics such as: phase properties, phase volume fractions, 
and certain statistical moments of spatial variation of 
properties. The ensemble average of w,- is defined by 

. n = N 

<K,->(x)= - £ K , - „ ( X ) (2.14) 

where there are TV members of the ensemble. The operations 
of ensemble averaging and differentiation are commutative. 
Therefore (2.12) and (2.13) are also valid for ensemble 
averages; see e.g. [4], 

In the case of SH fields, the moving average and the en
semble average are constants. It is also quite evident that they 
are equal, which is known as an ergodic hypothesis. The 
fundamental problem is the relation between moving averages 
or ensemble averages of statistically nonhomogeneous stress 
and strain. It is remarkable that the answer to this question 
has been given for both kinds of averages almost at the same 
time and that the relations are the same (Beran and McCoy 
[8]-ensemble average, Levin [9]-moving average), thus 

&,y(x)=JLJw(x,x')ew(x')c/x' (2.15) 

This important result shows that space variable averages are 
defined by what is called today a nonlocal theory. It is, 
however, not a practical result since the two point tensor L* 
depends on phase properties and phase geometry in unknown 
fashion. For similar developments for conductivity of 
heterogeneous media see Beran, [10]. 

It is of interest to note that multipolar or strain gradient 
theories are special cases of nonlocal theory. This is seen from 
series expansion around x, [8], from which it follows that 
(2.15) can be approximated by 

^ij = C*jk/eM+D*ijk/m^k/,m+E*jkim„ek/y,„„+ . . . (2.16) 

If only the first term in the right side of (2.16) is retained then 

W = C5„£-H(x) (2-17) 
which implies that variable averages are related just as 
constant averages in (2.3). The relations (2.11)—(2.13), and 
(2.17) are equivalent to classical elasticity equations where the 
displacements are moving or ensemble averages and the elastic 
properties are effective. Therefore, equation (2.17) is the 
essence of the classical approximation for heterogeneous 
media introduced in the foregoing. Classical approximations 
for other kinds of physical behavior are defined analogously. 
On the basis of accumulated experience with composite 
materials and heterogeneous media it appears that this 
simplest approximation is adequate for most engineering 
problems. The situation is different for dynamic problems 
with very high frequencies of vibration, thus very small 
wavelengths, and for very high stress and strain gradients, 
e.g., at crack tips. 

This survey will be almost exclusively concerned with 
classical effective properties that define the classical ap

proximation. The following discussions of analytical treat
ments will be divided, if possible, into three categories: (a) 
direct approach, (T>) variational approach, and (c) ap
proximations. Direct approach implies exact calculation of 
effective properties for some geometrical model of a com
posite material. The value of such results obviously depends 
on the realism of the model used but the number of choices 
that permit exact analysis is not large. Exact analysis implies 
that the microfields that are averaged satisfy the phase 
governing differential equations, the phase interface con
ditions, and the external boundary conditions on the com
posite. However, the latter need not be satisfied precisely but 
only in a suitable average sense (recall the boundary layer in 
the fundamental postulate of the theory of heterogeneous 
media). It frequently happens that effective properties 
computed for a certain model agree well with experimental 
data although the details of phase geometry of the model and 
the tested specimen are different. From this it should not be 
concluded that the model microfields are in similar agreement 
with specimen microfields, because effective properties are 
defined in terms of averages and functions that have the same 
averages can be very different in detail. 

The variational approach is in a certain sense more 
powerful than the direct approach since it leads to bounds on 
effective properties when exact calculation is not possible. In 
particular, it is the only approach that can give results for 
irregular phase geometry in terms of partial information. The 
practical importance of the bounds obtained depends on their 
proximity. 

Approximations are by their nature of unlimited variety. 
The most primitive approach is to postulate "semiempirical" 
expressions without the benefit of a model or theory. Such 
expressions will inevitably contain an undetermined 
parameter to be fitted to the experimental data. However, 
other experimental data will generally require a different 
value of the parameter and so measurement of the effective 
property has been replaced by measurement of a parameter, 
for no good reason. In more sophisticated and sometimes very 
ingenious versions, models of composite materials are 
analyzed on the basis of assumptions that are in principle 
incorrect, with the hope that the error introduced is not large. 
Only this kind of approximations will be discussed in the 
present survey and it will be endeavored to point out their 
relations to exact procedures. While approximations are 
unavoidable and often very valuable in the development of a 
complex subject of practical importance they should always 
be viewed with caution and should never displace available 
exact results. 

3 Elastic Properties 

3.1 Statistically Isotropic Composites 

3.1.1 Introduction. A composite is statistically isotropic 
when its effective stress strain relation is independent of the 
choice of coordinate system. Important cases are: random 
mixture of two phases, matrix containing spherical type 
particles or randomly oriented elongated particles (e.g., short 
fibers), porous media, etc. It is of interest to note that a 
polycrystalline aggregate with randomly oriented crystals is a 
statistically isotropic composite with an infinite number of 
anisotropic phases. This will be discussed in Section 3.1.5. It 
follows just as for homogeneous elastic materials that in the 
isotropic case (2.3) reduce to the usual forms 

&v = \*ekk6u + 2G*iu (3.1.1) 

or 

a=3K*e (a) su = 2G*eu (b) (3.1.2) 

where K* = effective bulk modulus; G* = effective shear 
modulus; &, e = isotropic part of average stress, strain; and 
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Sjj,ey = deviatoric part of average stress, strain. Other ef
fective elastic properties such as E* and c* are defined in the 
usual way. All of the interrelations of isotropic elastic moduli 
remain valid for effective elastic moduli. 

3.1.2 Direct Approach. 
for two phase composites 
elementary relations 

Central to the direct approach 
with isotropic phases are the 

*P> 
K*=Kl+(K2-K{)—v2 (a) 

G* = GX+(G2-G,)-
P(?) 

(3.1.3) 

(*) 

(no sum on ij in (b)), where 1, 2 indicate the phases, e(2) and 
e®are averages of e(x) and e,y(x) over phase 2, and v is volume 
fraction. The averages e and e„ are induced by homogeneous 
boundary conditions of type (2.1a) 

Ui(S)=eXj or ui(S)=eijxj (3.1.4) 

which arise from the decomposition e,j• = e5y+ £y. Relations 
of type (3.1.3) can also be written in terms of stress averages 
over one phase, see e.g., [1, 6]. 

The simplest case is dilute concentration of spherical or 
ellipsoidal particles of material 2 in matrix 1. The definition 
of "dilute" is that the state of strain in any one particle in the 
composite body under homogeneous boundary conditions is 
not affected by all the other particles. Thus the strain is that 
of a single particle in an infinite body and this happens to be 
uniform for an ellipsoid with far field homogeneous strain, 
Eshelby [11]. Thus for spherical particles it follows very 
simply from spherical particle strain expressions and (3.1.3) 
that 

3K, + 4G, 

3A-2+4G, 

G* = G j + ( G 2 - G , ) 
5(3*,+4G,) 

9 ^ + 8 0 , +6i(A", +2G1)G2 /G1 

(«) 

(b) 

(3.1.5) 

given independently in [11-13]. Here 1 indicates matrix, 2 = 
spherical particles, and c = v2<<\. Results for randomly 
oriented ellipsoidal particles were given in [11]. The special 
cases of elongated ellipsoids (short fibers) and platelets have 
been discussed in [2]. 

Dilute concentration results may be viewed as the first two 
terms of a power series in particle volume fraction c. In this 
representation an effective property M* may be written as 

M* 
= l+axc+a2c

2 + . . . (3.1.6) 

Dilute concentration results such as (3.1.5) determine the 
coefficient ax. Evaluation of a2 as a much more difficult 
problem which has been resolved by Batchelor and Green [15] 
for identical rigid spheres embedded in incompressible elastic 
matrix (in the context of their treatment of effective viscosity 
of a rigid spheres suspension). Chen and Acrivos [14] have 
extended the analysis to the considerably more difficult case 
of any linear isotropic elastic spheres and matrix. The 
analyses require proper summation of the effects of all sphere 
doublets and unlike ax, ct2 depends on particle statistics. For 
randomly and isotropically distributed identical rigid spheres 
in incompressible matrix the analysis of [15] provides the 
estimate a2 = 5.2 ±0.3 while according to [14] a2 =5.01 in this 
case. 

The case of finite concentration of spherical particles is an 
extremely difficult problem since computation of effective 
moduli requires a detailed elastic field analysis subject to 
interface continuity conditions (2.5) on all spherical surfaces. 
It appears that only one rigorous treatment for a special 

Fig. 2 Composite spheres assemblage; composite cylinders 
assemblage 

arrangement of spheres called the composite spheres 
assemblage is available and this only for the effective bulk 
modulus. A composite sphere is defined by an isotropic 
sphere 2 enclosed in an isotropic concentric shell 1, Fig. 2. If 
the external boundary r=b is subjected to purely radial 
displacement ur(b)= e°b, the radial stress on the boundary is 
written arr (b) = 3K*e° where K* follows from the analysis of 
this elementary, radially symmetric, elasticity problem and is 
a function of core and shell elastic moduli and of alb. It is 
seen that to an external observer the composite sphere behaves 
just as a homogeneous sphere of radius b with bulk modulus 
K*. If a homogeneous isotropic body with bulk modulus K* is 
subjected to homogeneous isotropic strain e°8y, the 
displacement and traction on any internal spherical surface 
with radius b are purely radial and are precisely those on the 
composite sphere boundary given in the foregoing. It follows 
that such a sphere can be replaced by the composite sphere 
without perturbing the homogeneous isotropic state of stress 
and strain in the body. Therefore such replacements can be 
performed again and again with composite spheres of dif
ferent sizes as long as the spheres all have the same A'* which is 
certaiflly the case if in all composite spheres the ratio alb and 
the constituent properties are the same. It may be rigorously 
shown that if the body is filled out with composite spheres, 
which diminish to infinitesimal size, then in the limit as the 
remaining volume goes to zero the effective bulk modulus of 
this composite material converges to the bulk modulus K*. 
This model is called the composite spheres assemblage, Fig. 2. 
Its bulk modulus is given, Hashin [16], by 

K*=KX+(K2-KX) 

= Kl + 

(3A", +Ad)v2 

3K2 + 4G1-3(K2-K1)V2 

v2 

l/(K2-K1) + 3vi/(3Kl+4Gl) 

where 1 indicates matrix and 2 indicates particles. The result 
(3.1.7) is easily generalized to the case of hollow spheres, 
reference [17], which is of practical importance for hollow 
microsphere reinforcement. 

The basis for the results established so far is special internal 
geometry which permits exact analysis. Another class of exact 
solutions is based on special relations among the constituent 
properties. One of these cases is a two-phase material of 
arbitrary phase geometry where the shear moduli of the two 
phases are equal. In this case (3.1.7) is the exact solution for 
this case, Hill [6]. 
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Another case is a weakly inhomogeneous medium which is 
defined by small deviation of local space variable moduli 
from their averages. Then, for any number of phases, 

_ K^R+KT^ (3'L8) 

where A"2 is the variance of K, Molyneux and Beran [18], 
which for two phases is given by (K2 -K\)2vxu2. Then (3.1.8) 
can be interpreted as the beginning of a series expansion in 
(K2-K,)/K. 

Finally, the isotropic version of (2.15) and (2.16) will be 
briefly discussed. In the case of statistical isotropy the two-
point tensor L,*w appearing in (2.15) is statistically isotropic. 
Even in this simplest case this tensor is expressed in terms of 
six scalars which are unknown function of r= l x - x ' I, of the 
phase geometry and the phase properties. This should be 
contrasted with (3.1.2) which require only two material 
constants. It has been shown, reference [8], that in the 
isotropic version of (2.16) D*jklm vanish and the stress-strain 
relation reduces to that of first strain gradient theory, 
requiring classical elastic moduli K*, G*, and two effective 
material length parameters, /, and l2. The latter have been 
computed, Beran and McCoy [8], for weakly non-
homogeneous media in terms of two-point correlations of the 
space variable local elastic moduli. It appears that this is the 
only calculation of higher order elastic constants of 
heterogeneous media available in the literature. 

3,1.3 Variational Bounding. When a composite 
material is statistically isotropic, the strain and stress energies 
(2.7) can be expressed in terms of (3.1.2) in the convenient 
forms 

W 
1 
;W*£2+2G*eiJeij) 

1 
(3.1.9) 

W = - ( ct/K* + SySy /2G*) 

Appropriate homogeneous boundary conditions to obtain 
energy expressions with K* only are 

«,• (S) = eXi T, (S) = an-, (3.1.10) 

To obtain energy expressions with G* only 

ui(S)=eIJXj Ti(S)=s-unj (3.1.11) 

In the following, lower and upper bounds on some effective 
property M* will be denoted M(*_) ,M(*+) implying that 

A*?., <M* <M?+ ) (3.1.12) 

For arbitrary internal phase geometry with isotropic phases 
the extremum principles of minimum potential and minimum 
complementary energy have been used with admissible linear 
displacement fields or with admissible constant stress to 
obtain the elementary bounds, Paul [19] 

/f(*_) = [ E i ; „ / ^ ] - 1 = - ^ - (a) 

(3.1.13) 

KU) = m„v„=K (b) 

Gf-) = [E«),/GJ1]-1 = - ^ - (a) 

(3.1.14) 

G('+) = EG„t;„ = G (b) 

where n labels the phases. Averages such as K and G are 
(unfortunately) sometimes called "rules of mixture." It 
follows from the usual relation of Young's modulus E to K 
and G that 

E?± 
9K?±)G; ( ± ) u ( ± ) 

(±r 3^*±) + G*±) 
(3.1.15) 

for any bounds on K* and G*. Similar bounds for effective 
Poisson's ratio v* cannot be established. 

For most applications, the bounds (3.1.13) and (3.1.14) are 
not close enough. Improved bounds for arbitrary statistically 
isotropic phase geometry have been derived, Hashin and 
Shtrikman [20], on the basis of new variational principles in 
terms of the elastic polarization tensor established in [21]. For 
two-phase media these results are: 

K(~) Ki + i/^x2-K1) + 3v,/(3Kl+4Gl)
 {a) 

(3.1.16) 

K*+) =K2 + 

Gf-) = G, 

l/(Ki-K2) + 3v2/QK2+4G2) 
(b) 

Vl 

l/iGi-GO + bv^Kt +2Gi)/5G]{.'iKl+AGl) 

G(*+) = G2 

+ 
V\ 

(1/(G, - G2) + 6v2(K2 + 2G2)/5G2(3K2 + 4G2) 

when 

K, <K7 G, <G2 

(a) 

(3.1.17) 

(*) 

(3.1.18) 
Bounds for any number of isotropic phases were also given in 
[20]. 

The original derivation of the bounds, reference [20], in
cluded some mathematical liberties. These were first removed 
in [22] by application of Fourier transform methods. Walpole 
[23] elegantly rederived the bounds by Green's function and 
potential methods using the classical extremum principles 
with the polarization concept in a manner indicated by Hill, 
reference [24]. He also generalized the bounds by removal of 
the restriction (3.1.18). Other elegant and interesting 
derivations and generalizations were given by Korringa [25], 
Willis [26, 27], Kroner [28], who introduced the notion of odd 
and even order bounds ((3.1.13) and (3.1.14) are first (odd) 
order and (3.1.16) and (3.1.17) are second (even) order), and 
Wu and McCullough [29]. 

Comparison of (3.1.16a) with (3.1.7) reveals the 
remarkable fact that they are the same. Since (3.1.7) is an 
exact result and since (3.1.16a) is a general lower bound in 
terms of phase volume fraction, it follows that (3.1.16a) is the 
best possible lower bound in terms of volume fractions. 
Similarly, (3.1.16b) is the best possible upper bound since it is 
at once interpreted as an exact result for a composite spheres 
assemblage with particles 1 of volume fraction vx and matrix 
2. It has never been shown that (3.1.17) are also best possible 
in terms of volume fractions but they well may be. The 
bounds are generally in good agreement with experimental 
data. A recent particularly careful experimental investigation 
is given in [30] also citing other experimental investigations. 

The bounds are of practical value for phase stiffness 
mutual ratios up to about 10. They obviously cannot provide 
good estimates for extreme phase stiffness ratios such as one 
rigid phase or an empty phase (porous medium). Since the 
only geometrical information entering is volume fractions, the 
bounds cannot distinguish between phases in the form of 
matrix or particles. Evidently, of two composites with same 
phases and volume fractions, one having very stiff matrix and 
the other very stiff particles - the first is much stiffer than the 
second, but both of them must obey the same bounds. Thus in 
the extreme case of one infinitely rigid phase, the upper 
bounds become infinite while in the other extreme case of an 
empty phase the lower bounds vanish. 
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To improve the bounds it is necessary to incorporate ad
ditional geometrical information. One way of doing this is in 
terms of higher order statistical information. The volume 
fractions of a statistically homogeneous material can be in
terpreted as one-point probabilities. Therefore it is plausible 
to try to incorporate additional geometrical information in 
terms of two-point, three-point . . . probabilities. This can 
be done in terms of the classical extremum principles, 
reference [4], or in terms of the polarization principles [27, 
28], which have been used to derive (3.1.16) and (3.1.17). 
Kroner [34] has given results for so-called "perfectly 
disordered" materials, defined as composites in which 
properties of a phase are not correlated with properties of 
adjacent phases and thus the two-point probabilities become 
delta functions. This however, is not a realistic concept since 
it implies that phase regions are points or that the microscale 
in the MMM principle has been lost. For discussion of various 
statistical bounds derived see [4,31, 32]. For discussion of the 
pertinent Russian literature see [33]. 

The improvement of bounds in terms of statistical in
formation poses some intrinsic problems. Experimental 
determination of the required probability functions is an 
involved and time-consuming task and it is certainly easier to 
determine the effective moduli experimentally. Furthermore, 
the ususal multipoint probability functions cannot in general 
distinguish between matrix and particle phases. Therefore, 
they are not very useful for the case of one phase much stiffer 
than the other because the bounds will be far apart for the 
same reasons given previously in relation to bounds (3.1.16) 
and (3.1.17). 

A different way to obtain improved bounds is to abandon 
general phase geometry and to construct bounds for a specific 
model. A case in point is the effective shear modulus of the 
composite spheres assemblage model discussed in the 
foregoing in the bulk modulus context. Since a sheared 
composite sphere does not behave as some equivalent 
homogeneous sphere, the replacement scheme employed for 
effective bulk modulus fails. However, solutions for a sheared 
composite sphere can be interpreted as admissible fields for 
the principles of minimum potential and minimum com
plementary energy. This gives the following upper bound for 
the case of particles stiffer than matrix, Hashin [16, 87]. 

??+,= G,[l + 
l / ( 7 - \) + A(l - c ) - c ( l -c2/3)/(Bc1/3 +Q + QJ 

where c is particle volume fraction and 

1=G2/GX 

A 2 ( 4 - 5 . , ) 

(3.1.19) 

B= 

15(1-1-,) 

10(1 - Vl) (7 - 10e2)(7 + 5 . , ) - T ( 7 - 10i>,)(7 + 5e2) 

21 4(7-Wv2) + y(l + 5v2) 

10 
C=~{l-\QVl){\-Vx) 

while the lower bound remains (3.1.17a). These bounds are 
much more restrictive than (3.1.17) (of course, at the price of 
very special geometry) and are close even for high par
ticle/matrix stiffness ratio. The bounds coincide for small c 
(to yield (3.1.56)) and also for c very close to 1. 

3.1.4 Approximations. A well-known approximation 
for effective properties of particulate composites is the so-
called Self Consistent Scheme (SCS). It is best discussed in 
terms of the relations (3.1.3) and in this sense it is a method to 
estimate the particle phase strain average. A typical particle is 
assumed to have spherical or ellipsoidal shape. In the most 
commonly used version of the method it is assumed that any 

(a ) (b) 

Fig. 3 Self-consistent scheme; (a) first version, and (b) generalized 
version 

particle is embedded in a homogeneous body which has the 
unknown properties K* and G* and is subject to boundary 
conditions of type (3.1.4) at infinity, Fig. 3(a). This defines a 
boundary value problem which can be solved for an arbitrary 
ellipsoidal particle, Eshelby [11], resulting in uniform strain 
in the particle that is a function of K* and G*. Inserting the 
average particle strain into (3.1.3) results in two simultaneous 
algebraic equations for K* and G*. It appears that the method 
originates with Bruggeman [120] in the context of 
conductivity (see Section 6.4) who named it effective medium 
theory. We shall call this the first version of the SCS. There is, 
however, no compelling reason to embed the particle directly 
in the effective medium. We may imagine the particle to be 
embedded in a matrix shell which is embedded in the effective 
medium. We shall call this the generalized SCS. Obviously, 
the mathematics is now more difficult since it is necessary to 
solve a three-phase inclusion boundary value problem to 
obtain the particle strain. For this reason the generalized 
version has been carried out only for spherical surrounded by 
concentric spherical matrix shell. 

The first version has been applied for spherical particles by 
Budiansky [35] and by Hill [36]. The final results as given by 
the latter are 

v. 
• + • 

Vi 

K*-K2 K"-K, 

+ 
v2 

3K*+4G* 

6(K*+2G*) 
(3.1.20) 

G*-G2 ' G*-G{ 5G*OK*+4G*) 

The method has been extended to randomly oriented ellip
soidal particles by Wu [37]. 

The essential problem with this simple method is that it 
violates the MMM principle. The inclusion boundary value 
problem defines variable elastic fields in the equivalent body. 
As has been explained in Part 2, the treatment of such a case 
requires micro, mini, and macroscales. In the simplest ver
sion, named the classical approximation, classical elasticity 
formulations can be used to obtain moving averages 
(or ensemble averages), thus minivariables. The solution of 
the particle boundary value problem in the SCS version 
requires satisfaction of displacement and traction continuity 
condition at particle-equivalent body interface. Thus micro-
variables (particle) are equated to minivariables (effective 
material) which is clearly meaningless, since the latter are 
averages of the former. Such a procedure would only be 
permissible for a particle whose size is of RVE order. To put it 
figuratively: the SCS assumes that a tree sees the forest - but a 
tree sees only other trees. 

It may be shown that K* and G* as defined by (3.1.20) are 
always between the bounds (3.1.16) and (3.1.17). If plotted as 
functions of particle volume fraction they are tangent to the 
lower bounds at v2 = 0 and tangent to the upper bounds at 
v2 = 1. For particles much stiffer than matrix, equation 
(3.1.20) overestimates the effective moduli while for particles 
much more compliant than matrix, the effective moduli are 
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underestimated. Indeed, for rigid particles (3.1.20) predicts 
infinite effective moduli for y2=0.50 and for voids-zero 
effective moduli for v2 =0.50. These results are unreasonable. 
Furthermore, equation (3.1.20) are invariant to phase 
property interchange while a particulate composite must 
certainly be strongly biased to such interchange since stiff 
matrix defines a much stiffer composite than stiff particles. It 
must be concluded that this version of the SCS should be 
considered with caution. But it should be noted that there are 
cases when no other method is available, e.g., short randomly 
oriented fibers which can be represented as elongated prolate 
spheroids, or platelets, which can be regarded as flat oblate 
spheroids and are thus special cases of the treatment in [37]. 

In the generalized version a composite sphere consisting of 
a particle with radius a and a concentric matrix shell with 
radius b is embedded in the effective medium, Fig. 3(b). The 
ratio t) = a/b is now an unknown parameter which (arbitrarily) 
was assigned the value 1 in the first version. In most work 
with the generalized version it was assumed that rj3 = v2 

implying that volume fractions in the composite sphere are the 
same as in the composite. The first attempt appears to be due 
to Kerner [38] who made a number of unnecessary assump
tions, obtained the correct result for K* and an incorrect 
result for G*. Interestingly enough, the result for K* is the 
same as the composite spheres assemblage result (3.1.9). (The 
mathematical reasons for this are known but unpublished.) 
He obtained for G* the lower bound (3.1.1 la) but this result is 
incorrect since he made the assumption that in the three phase 
boundary value problem, Fig. 3, in shear, the state of strain in 
the particle is a uniform shear. Another incorrect analysis to 
obtain G* was given by Van der Poel [39], who employed an 
inadmissible elasticity solution for the matrix shell. The 
correct solution for G* was given by Smith [40] and an im
proved version by Christensen and Lo [41]. It is a complicated 
implicit result but is easily evaluated numerically. It is in
teresting to note that this G* result is in between the shear 
modulus bounds for the composite spheres assemblage, 
(3.1.17a) and (3.1.19), and tangent to the bounds at both 
extremities of particle volume concentration v2 = 0,1. 

The generalized SCS appears to be a more realistic ap
proximation than the first SCS version since the matrix shell 
mitigates the problem of satisfaction of interface conditions 
and results are no longer unbiased to phase interchange. 
Intuitively, it appears that in any embedding approximation 
the best results will be achieved when a typical "building 
block" of the composite material will be embedded. An 
element consisting of particle and surrounding matrix is such 
a building block but a particle is obviously not. However, the 
choice of TJ for a spherical composite element is not obvious. 
For G*, Christensen and Lo [41] have interpreted the result as 
an approximate value for the composite spheres assemblage 
where of course T/3 = v2 • The case of arbitrary ?/ has been 
considered in [42], in the context of conductivity, and it has 
been shown that the range v2 < r/3 < 1 defines a family of 
nonintersecting curves which densely cover the region between 
the composite spheres assemblage result or best possible lower 
bound and the first SCS version. 

A method that is related in spirit to the SCS is the so-called 
differential scheme, Boucher [43], McLaughlin [44]. It ap
pears that this method also was first conceived by Bruggeman 
(see Section 6.4). It is essentially assumed that addition of a 
small amount of particles to a composite will increase the 
effective modulus by a dilute concentration-type expression 
with current effective modulus M*(v2) replacing matrix 
modulus. This approximation again assumes that particles see 
an effective material and thus also violates the MMM prin
ciple. 

In many composites of interest the particles are very 
elongated and can thus not be approximated by spheres. A 
case in point is randomly oriented fibers in a matrix, a 

material that is of significant modern technological im
portance and is called a chopped fiber composite. A 
reasonable approximate treatment for very long fibers is due 
to Christensen and Waals [45]. It essentially consists of 
orientation averaging of the effective properties of a ran
domly oriented composite cylinder. The results are actually 
upper bounds and are in reasonably good agreement with 
experimental data. If the fibers are short the only result 
available is the SCS treatment in [37], but this will probably 
considerably overestimate effective moduli for such large 
stiffness ratios as encountered for glass/polymer systems. 

3.1.5 Polycrystalline Aggregates. Metals consist of 
irregularly shaped anisotropic crystalline grains whose 
principal crystallographic axes are mostly randomly oriented 
in space. Consequently, the material is statistically isotropic. 
If the elastic moduli of all single crystals are referred to one 
fixed system of axes the polycrystalline aggregate (PA) is 
described as a composite with an infinite number of 
anisotropic phases, each phase being defined by orientation of 
crystallographic axes of its member crystalline grains. 

The problem of determination of the effective elastic 
moduli of a PA is one of long standing. Voigt [46] has 
analyzed the problem by assuming uniform strain in all 
crystals and Reuss [47], by assuming uniform stress in all 
crystals. Hill [48], in a pioneering paper, has shown on the 
basis of the classical extremum principles of elasticity, that 
the results are upper and lower bounds, respectively. To the 
writer's knowledge this paper has initiated the notion of 
bounding of effective moduli. These so-called Voigt and 
Reuss bounds are the analogues of (3.1.13) and (3.1.14). 

Hashin and Shtrikman [49] have employed their variational 
principles [21] to develop a method for bounding of PA ef
fective moduli and gave explicit results for cubic crystals. 
These are a considerable improvement of the Voigt-Reuss-
Hill bounds. The method has been employed by Peselnick and 
Meister [50], Watt [51], and Watt and Peselnick [52], to 
construct bounds for hexagonal, triclinic, tetragonal, and 
monoclinic crystals. Hashin [53] has given bounds for a PA 
consisting of two different kinds of cubic crystals. It has been 
argued [4, p. 229], that the derivation of the bounds by this 
method implies the assumption that a certain integral 
vanishes. It has been shown in [53] that this assumption does 
not enter if the grains are "equiaxed" i.e., have no preferred 
dimension. Furthermore, Walpole's [54] elegant rederivation 
of the bounds based on Green's functions and potential 
theory also reaffirms the rigorous validity of the bounds. 

Hershey [55] and Kroner [56] have used the self-consistent 
scheme with the assumption that a single crystal can be ap
proximated by an anisotropic sphere embedded in the ef
fective isotropic medium. This is the first SCS version and 
obviously the only one applicable in this case. Here the single 
crystal is the typical building block. 

3.2 Fiber Composites 

3.2.1 General. The composite material under con
sideration consists of aligned parallel fibers which are em
bedded in a matrix. Material specimens are generally cylin
drical with fibers in generator direction x}, Fig. 4. The phase 
geometry is defined by any transverse plane cut and is thus 
two-dimensional. The material is in a certain sense the two-
dimensional analogue of a particulate composite. A more 
general two-dimensional material is a fibrous composite 
where the phases have cylindrical shape but are not necessarily 
in the form of matrix and fibers. This is the two-dimensional 
analogue of the general two-phase material. The most 
commonly used fibers are glass, carbon, and graphite. Their 
cross-sectional diameters are of the order of 0.01 mm and they 
are randomly located in the transverse plane. The composite is 
consequently statistically transversely isotropic which implies 
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^* Xp 
Fig. 4 Unidirectional fiber composite 

that the effective stress strain-relations are invariant with 
respect to any rotation of the x2, and x3 axes about Xi. Such 
stress-strain relations are well known and may be written as 

ff11=n*e,l+/*e22 + /*e33 

a22=l*en+(k* + G*T)e22+(k*-G*r)e21 (3.2.1) 

a3i=l*en+{k*-G*T)e22+(k* + G*T)e33 

an=2G*Ltn a2}=2G*Te2i an=2G*Len (3.2.2) 
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(3.2.3) 

where 

k* = transverse bulk modulus, 
G? = transverse shear modulus, 
G* = longitudinal shear modulus, 
E*L = longitudinal Young's modulus, 
Ef = transverse Young's modulus, 
v*L = longitudinal Poisson's ratio, 
v*T = transverse Poisson's ratio. 

There are five independent effective elastic moduli and 
there are thus interrelations among the ones appearing in 
(3.2.1)-(3.2.3), see [1,58]. Two of these are: 

E*T 

2(1 + v*T) 
(a) 

(3.2.4) 

4/Ef = \/G*T+l/k*+4v*L
2/E*L (b) 

It has been shown in a general sense [1], that for isotropic or 
transversely isotropic constituents all effective property 
computations are defined by two-dimensional elasticity 
problems; antiplane strain for G* and generalized plane strain 
for all others. 

Hill [57], has shown that for any two-phase fibrous cylinder 
the effective properties n*, /*, k*, E*L, and v*L are in
terconnected. Two of such relations are: 

E1=E+ 
4 ( e 2 - " i ) 2 

\k k") (l/k2-l/kl)
1 \k k* 

\/k2-\/k, \k k*) 

(3.2.5) 

Here an overbar denotes averages in the sense E = 
E 1Ui+E 2u 2 . The relations are valid for isotropic and for 
transversely isotropic phases. They imply that a two-phase 
transversely isotropic fibrous material has only three in
dependent effective elastic properties. 

3.2.2 Direct Approach. To compute the effective elastic 
moduli it is best to proceed as follows: homogeneous 
boundary conditions (2.1a) are imposed on a fiber-reinforced 
cylinder with e22 = e33 = e°, all others vanish. Then from 
(3.2.1) CT22 = ff33 =2k*e°. Once k* has been computed E£ and 
v*L are known from (3.2.5) and /* and n* follow from moduli 
interrelations. To compute G*T, equation (2.1«) are applied 
with e23 # 0 , all others vanish. This defines Gf- by ff23 = 2Gf-e23 

and it is required to solve a shearing plane strain boundary 
value problem. Similarly, G*L is defined by aX2=2G*Le\2 when 
e°l2 is the only nonvanishing average strain and the boundary 
value problem that must be solved is now antiplane. 

For purposes of computation, some model of a fiber 
composite must be assumed. It appears that the only models 
for which exact analyses are available are the composite 
cylinder assemblage (CCA) for which simple closed-form 
analytical results are available and periodic arrays of identical 
fibers which must, however, be analyzed numerically. The 
CCA model is the two-dimensional analogue of the composite 
spheres assemblage model, Section 3.1.2., Fig. 2. The basic 
element is a long composite cylinder consisting of inner 
circular fiber and outer concentric matrix shell. For certain 
kinds of boundary deformations or loadings the composite 
cylinder is externally indistinguishable from some 
homogeneous transversely isotropic cylinder. Such boundary 
conditions are: radial displacement and stress in the transverse 
plane, uniform extension in axial direction, and uniform 
longitudinal shearing displacement and traction on the 
boundary. This, however, is not so for boundary conditions 
equivalent to transverse shear or to transverse uniaxial stress. 
It follows that a composite cylinder can be replaced by an 
equivalent homogeneous cylinder with regard to elastic 
properties £,* E*, v*L, n*, I*, and G* but not with regard to 
properties Gf, Ef and v*T. The CCA is constructed by filling 
out a homogeneous transversely isotropic cylinder of ar
bitrary transverse section with composite cylinders of dif
ferent radii in which the fiber volume fraction and constituent 
properties are the same. It can then be shown that, in the 
limit, k*, E I , c£, n*, /*, and G* of the assemblage are those 
of one composite cylinder. For details see [1], In view of what 
has been said in the foregoing it is sufficient to determine k* 
and G* and all others of the preceding group follow. Results 
of interest are 

k* = 
kdk2 + G\)Vi +k2(ki+Gl)v2 

(k2 + Gl)vl + (kl+G1)v2 

(3.2.6) 

= * , + • 

E I = E i y , + E 2 i ; 2 + 

\/{k2-ki) + vl/(k^ +G, ) 

4 ( " 2 - " i ) 2 ^ 2 

vt = ViVl +V2V2 + 

vl/k2 + v2/kl + I /G1 

(v2-vl)(\/kl-l/k2)viv2 

G*L = G 

v1/k2 + v2/kl +1 /G, 

G, i ; 1 +G 2 ( l+! ; 2 ) 

= G,+ 

G , ( l + t;2) + G 2 y, 

v2 

(3.2.7) 

(3.2.8) 

(3.2.9) 

\/(G2-Gx) + vl/2Gl 

where 1 is matrix and 2 is fibers. These results were first given 
by Hashin and Rosen [58], with (3.2.7) and (3.2.8) in different 
more complicated form. The method is easily extended to 
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hollow fibers [1, 58]. It is of interest to note that for the usual 
case of fibers which are considerably stiffer than the matrix 
the third term in the right side of (3.2.10) is negligible which 
leads to the well-known result 

E£=E ,u , +E2v2 (3.2.10) 

This can be derived by elementary means and is also 
rigorously true for any fiber (or fibrous) geometry if 
Poisson's ratios of phases are equal. 

The effective properties Gf-, Ef, and v*T can unfortunately 
not be derived by such a simple method and expressions are 
not available. However, close bounds have been established as 
will be discussed in the following. 

Most of numerical analyses of effective elastic properties 
have been carried out for square or hexagonal periodic arrays 
of identical circular fibers, mostly by finite element and by 
finite different methods; see e.g., references [59-61]. The 
boundary conditions on a typical repeating element of the 
array can be established by symmetry considerations and thus 
the numerical analysis can be confined to a single repeating 
element. Effective properties are then found by numerical 
averaging. It should be pointed out that the square array is 
not a suitable model for glass, carbon, and graphite fibers 
since the model is not transversely isotropic but tetragonal. 
The square array is conceivably applicable to bo
ron/aluminum composites in which fibers are arranged in 
patterns that resemble such arrays. It is, however, not ap
plicable to any type of boron tapes or prepregs. The reason is 
that these are thin unidirectionally reinforced layers whose 
thickness is of the order of the diameter of one boron fiber 
and can therefore not be considered composite materials 
(remember the MMM principle). 

The hexagonal array is a more suitable model since it is 
transversely isotropic. (All elastic materials of hexagonal 
symmetry are also transversely isotropic, see e.g., Love [62].) 
Comparison of effective elastic moduli results for hexagonal 
arrays with the CCA results (3.2.6)-(3.2.9) reveals the 
remarkable fact that they are numerically extremely close, up 
to fiber volume fractions of 70 percent [1], to all practical 
purposes. Such a remarkable agreement between two entirely 
different models leads one to the speculation that as long as 
the fibers are circular and are not in contact the actual 
locations of fibers and their diameter variations do not have 
significant effect on the effective moduli. If this is so the 
simple results (3.2.6)-(3.2.9) should apply for all such fiber 
composites. 

The results discussed so far are for isotropic fibers and 
matrix. However, carbon and graphite fibers are very 
anisotropic. This anisotropy is due to the rope-like 
microstructure of these fibers which are composed of long 
ribbons of graphite crystallites. Since the microstructure is 
axially symmetric these fibers have transversely isotropic 
properties. Their stress strain relations are thus of form 
(3.2.1)-(3.2.3) with elastic properties k, GT, GL, EL, ET, vL, 
vT. A simple scheme to transform results and analysis 
procedures for isotropic fibers and matrix into corresponding 
results and procedures for transversely isotropic fibers (and 
matr ix-if desired) has been given in [1, 63]. This is here 
summarized 

Isotropic Transversely 
Effective Phase Isotropic 
Property Modulus Replacement 

k=\+G k 
G Gj 

k\G*T,E*T,v*T E GT(3-GT/k) (3.2.11) 

v - (1 - GT/k) 

~G~l G G~L (3.2.12) 
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E* and v*L can now be obtained from (3.2.5) where v and k of 
fibers must be interpreted as vL and k of transversely isotropic 
fibers. 

3.2.3 Variational Bounding. The development of 
variational bounding methods for fiber composites has many 
similarities to such development for statistically isotropic 
composites. The classical principles of minimum potential 
and complementary energy in conjunction with linear ad
missible displacement fields and constant stress fields easily 
yield Voigt and Reuss type bounds, the analogues of (3.1.13) 
and (3.1.14), for all of the effective moduli, Hill [57], see also 
[1]. These bounds are, however, not of practical value for the 
fiber composites used in practice. It has proved possible to 
established closer bounds in terms of volume fractions only. 
These bounds happen to be also CCA effective moduli ex
pressions. In order to present them there is introduced for 
(3.2.6)-(3.2.9) the notation k*(\,2), E£(l,2), v*(l,2), G*L{\,2) 
where 1,2 denote the phases. In addition denote 

Gf(l,2) 

1 l / ( G 2 - G , ) + yi(A:i +2G,)/2G,(A:i+Gi) 
Then all lower bounds are given by k*(\,2), E2(l,2) etc. and 
all upper bounds are given by £*(2,1), E£(2,l) etc. (However, 
c*(l,2) and vt(2,l) may be either lower or upper. See [1,57] 
for criteria). All of the bounds except for Gf are at once 
recognized to be best possible in terms of volume fractions 
since they coincide with exact results for the CCA model. The 
bounds are the fibrous material counterpart of the bounds 
(3.1.16) and (3.1.17). Bounds for k*, E*L, and v*L have been 
given by Hill [57] and bounds for k*, G*T, and G*L by Hashin 
[22]. The bounds are easily transformed to apply for tran
sversely isotropic fibers by use of (3.2.11) and (3.2.12). 
Details are given in [63]. 

With respect to practical significance of the bounds, it is 
noted that E* bounds are always extremely close, thus 
demonstrating that (3.2.10) is valid for any fiber composite or 
fibrous material. The v*L bounds are useful estimates (about 
15 percent margin). The margin between the other bounds 
depends strongly on fiber/matrix stiffness ratio. For 
glass/polymer and boron/polymer composites the bounds are 
too far apart. For carbon, graphite/polymer they are close 
enough to be regarded as results (for arbitrary fiber 
geometry!) [63]. 

It will be recalled that G*T of the CCA model could not be 
obtained by a direct approach. However, it can be bounded by 
use of the classical extremum principles of elasticity. Ad
missible fields are displacements and stresses in a sheared 
composite cylinder. Details are given in [1,58]. The results will 
be written for transversely isotropic fibers 2 and for isotropic 
matrix 1. In view of (3.2.11), equation (3.2.13) becomes 

l > 2 

GT-(1,2) = G1 + T 7 ( G n _ G i ) + „ i ( A . i + G l ) / 2G 1 (A: 1 +G 1 ) 

Then 

G*r(_,=G*r(l,2) 

G ->=4 1 + 7^TrS^ (3-2-15) 
when 

G\>Gn kx<k2. 

G* -cUl (1+fi>2 "j 
n » ll p-v2[l+3fiv\/ca>l-Pi)]) (3.2.16) 

G* r (_,=GKl,2) 

when 

G^Gn kx>k2. 
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Here 

« = (0i -702) / ( l + 7 & ) P= (7 + /3iV(7- 1) 

0, =1/(3-41-,) (52=*2/(ft2+2G72) (3.2.17) 

7 = G 7 2 / G l 

The bounds (3.2.15) are applicable for fiber composites with 
fibers stiffer than matrix, thus all composites with polymeric 
matrix. The bounds (3.2.16) are applicable for the case of 
matrix stiffer than fibers, and thus for all cases of carbon and 
graphite fibers in aluminum or other metallic matrix (note 
that while EL of carbon and graphite fibers is larger than E of 
aluminum, the fiber moduli k and GT are smaller than those 
of aluminum). 

Bounds on Ef are simply obtained from (3.2.4b) as follows: 

4 1 1 4u*L
2 

= + — + — — (3.2.18) 
r(±) un±) K ^L 

3.2.4 Approximations. Different methods of ap
proximation of varying degrees of sophistication have been 
devised over the years to determine the effective elastic 
properties of fiber composites. For the case of continuous 
fibers the exact methods discussed in Sections 3.2.2 and 3.2.3 
are of sufficient accuracy and reliability to render such ap
proximations obsolete. The purpose of the present discussion 
is to assess the status of some approximations that are still 
being used, in relation to the exact results given. 

The self-consistent scheme (SCS) can be readily applied to 
fiber composites, similarly to its application to two-phase 
particulate composites. In the first version a circular fiber is 
regarded as being embedded directly in the equivalent 
transversely isotropic material. This yields algebraic 
equations for determination of all five effective moduli, Hill 
[64]. The results are in between the arbitrary phase geometry 
bounds tangent to the lower bounds (upper bounds) at fiber 
volume fraction zero (one). The results considerably 
overestimate the actual effective modup. The first SCS 
version has also been applied to the case of unidirectional 
short fibers by considering them as elongated ellipsoids [65]. 
In the generalized version a composite cylinder in which fiber 
and matrix volume fractions are those of the composite is 
embedded in the equivalent transversely isotropic material. 
This has been done by Hermans [66] for the case 
•q2 = (a/b)1 = v2 and is the analogue of Kerners approach [38], 
see Section 3.1.4. The results for k*, E*, v*L, and G* are 
precisely the exact CCA results (3.2.9)-(3.2.12) (this was not 
noted by Hermans). The G*T expression obtained is the lower 
bound (3.2.17) but this result is incorrect [1, 2], since not all 
of the fiber/matrix and continuity conditions are satisfied by 
the analysis. It is curiously the same mistake made by Kerner 
in analysis of G* of a particulate composite. The correct result 
for G*T in this context has been given by Christensen and Lo 
[2, 41]. It is algebraically lengthy but easily amenable to 
numerical evaluation. The case of unspecified t] has been 
discussed in [1]. 

A method in which fiber/matrix interface conditions are 
approximately satisfied (in a force resultant sense) has been 
devised by Aboudi [173] and has been employed for analysis 
of aligned short fiber composites, assuming square fiber cross 
sections. 

In some engineering circles, semiempirical so-called 
"Halpin-Tsai equations" [67], are sometimes used. These 
consist of the weighted average (3.2.10) for E* (this is 
universally accepted), a similar weighted average for v*L (this 
is not a good approximation), the CCA result (3.2.9) for G*, 
the lower bound (3.2.13) for Gf (taken from Hermans' paper, 
discussed above) and an empirical expression for EJ-. There 
seems to be no obvious reason for adopting such an approach. 

3.3 Cracked Materials. An interesting and important 

heterogeneous medium is an elastic body containing many 
cracks. This heterogeneous material is unlike any discussed 
before since the empty phase comprising the cracks has zero 
volume fraction. The stiffness reduction produced by the 
cracks is due to the stress singularities at the crack tips. 
Because of these the stress energy for prescribed surface 
fractions is increased by a finite amount relative to the stress 
energy of the body without cracks. Thus the cracks increase 
the compliances and therefore decrease the stiffnesses. 

It may be shown that when a cracked elastic body is sub
jected to boundary condition (2.1£>), the effective elastic 
compliances Sfjk/ are defined by 

Sfkl akl ~ ^ijkl akl + Ifij 
(3.3.1) 

I f 
7i/=2^E]5m(["/J"; + [«y]'»/)^ 

where Syw are matrix compliances, [«,-] are displacement 
jumps across the crack faces, and the summation extends over 
all cracks. The matrix compliances S^, may be isotropic or 
anisotropic. The symmetry of Sfjkl is defined by crack 
arrangement. Thus for randomly oriented cracks in an 
isotropic matrix the effective compliance tensor is isotropic 
while for cracks aligned in one direction it is orthotropic. In 
the former case (3.3.1) reduce to 

1 _ 1 2 

(3.3.2) 

JL - 1 A 
G* ~ G+~olyi2 

An alternative important definition of effective com
pliances is provided by the energy relation 

U° = U°0 + LAUm (3.3.3) 

where 

u°=\s*jkrfJJllv 
(3.3.4) 

and AC/,,, is the energy increase due to the mth crack in the 
presence of all others. This quantity can be expressed in terms 
of the crack stress intensity factor(s) (SIF), if known. In the 
case of isolated cracks this is a useful procedure since the SIF 
are simple known expressions. In the case of interacting 
cracks, however, the SIF become unknown functions of the 
mth crack length and of the entire crack geometry and At/,,,, 
in the presence of other cracks, must be found in terms of an 
integral of growing wth crack length, a somewhat hopeless 
undertaking. 

The simplest case is small density which is the analogue of 
dilute concentration discussed in the foregoing. It is assumed 
that the SIF and displacement jumps of each are given ac
curately by those of one crack in an infinite medium. The 
problem then becomes very simple. All results involve the 
crack density parameter a which is given by 

- Laf„ plane cracks 

a = \ (3.3.5) 

-Lamb2„ elliptical cracks 

where a,„ is half crack length and A the area of the plane 
specimen in the former case, while a,„, bm are the axes of the 
elliptical crack and V the volume in the latter case. All small 
crack density results are of the form 
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Sfjki — Syiti + aYijkt (3.3.6) 

where Yijk, depend on matrix properties and crack geometry. 
The first low crack density result given appears to be due to 
Bristow [68] who considered the case of randomly oriented 
line cracks. Walsh [69] computed the effective moduli for 
small density of randomly oriented elliptical cracks. Aligned 
circular cracks in an isotropic body were treated by Piau [70] 
in terms of long wave scattering (this is an unduly complicated 
method. The static method outlined in the foregoing is much 
simpler and gives the same results). Results for aligned line 
cracks in orthotropic bodies were given by Gottesman [71, 
72]. The only exact direct result for arbitrary crack density 
appears to be due to Delameter, Herrmann, and Barnett [73] 
who computed the elastic properties of a sheet containing a 
periodic rectangular array of identical line cracks by an 
analytical/numerical procedure. 

The self-consistent scheme approximation is readily 
adaptable to the present problem. The energy change due to 
any one crack is estimated by assuming that the crack is 
situated in the effective medium. The results are then given by 
(3.3.6) replacing in the TiJkl functions matrix compliances by 
effective compliances. The SCS generally underestimates the 
stiffness of cracked materials. The SCS has been applied to 
the case of randomly oriented elliptical cracks by Budiansky 
and O'Connell [74] and to the case of circular cracks aligned 
in planes by Hoenig [75]. An SCS treatment for a plane or
thotropic body with line cracks distributed parallel to the two 
axes of orthotropy has been given in [76]. 

Variational methods to obtain bounds have been recently 
initiated. Willis [77] has obtained bounds for the compliances 
of a material containing aligned penny-shaped cracks which 
are identical to the small density results for that case. Got
tesman [71] and Gottesman, Hashin, and Brull [72] have 
employed the classical variational principles to obtain bounds 
in terms of admissible fields which are elasticity solutions for 
subregions of the cracked body, each containing one crack. 

This concludes the discussion of elastic behavior. There are 
many important aspects that could not be included here. For 
excellent recent expositions see Willis [27], which also includes 
wave propagation, McCoy [30], which emphasizes statistical 
treatment, and Walpole [78]. See also Watt [177]. 

4 Thermal Expansion and Moisture Swelling 

4.1 General. The effective thermal expansion coef
ficients of a composite material are defined similarly to those 
of a homogeneous material. A large composite material body 
with no load on the boundary is subjected to uniform tem
perature rise <p. It may be trivially shown, from steady state 
heat conduction, that if <p = const, on the boundary, this is 
also true throughout the composite. The resulting average 
strains are then expressed as 

e„ = a*uV (4.1.1) 

and afj are defined as the effective thermal expansion coef
ficients. Since the body is not loaded the average stresses 
vanish but not the microstresses. For further general 
discussion of the subject see [1]. 

The fundamental result in theory of thermal expansion of 
two-phase composites is due to Levin [79] and extended by 
Rosen and Hashin [82] to generally anisotropic composites 
and phases in the forms. 

afj = &„ + («g> - aff)Pklrs (S*sij - SrsiJ) (4.1.2) 

= a«)+ (ag> - a®)Pklrs (S?sij -S®,) 

where 

Here a,-, and Sijkl are the averages of the composites' thermal 
expansion coefficients and compliances, respectively, and Im 

is the fourth-rank symmetric unit tensor. The result (4.1.2) 
uniquely determines a j in terms of phase properties and 
effective compliances Sfjkl for the most general kind of 
thermoelastic two-phase composite. It has been derived by 
application of the theorem of virtual work. The derivation is 
restricted to the case of two phases. 

For temperature dependence, equation (4.1.2) remains 
valid with all temperature dependent properties taken at final 
temperature (secant properties). 

An interesting general result is obtained for a porous or 
cracked body. If the matrix is given the index 1 then 

a* = „(!) (4.1.3) 

for any pore or crack geometry. This may be deduced from 
(4.1.2) and also simply from first principles. 

The case of moisture swelling is very similar. Moisture 
absorption is characterized by the specific moisture con
centration c which is the moisture absorbed by unit mass of 
the material. In a homogeneous anisotropic body the stress-
free moisture-swelling strains are given by 

e</ = / V (4-1.4) 

where j3y are the swelling coefficients. If the body is isotropic 
(3,y = )35,y. If there are, in addition, mechanical strains 
produced by stresses, the simplest assumption is to superpose 
them on the swelling strains thus obtaining the complete 
analogue of uncoupled thermoelasticity. The analogy extends 
to all governing equations with atj replaced by (3,-,. In com
posites there are certain differences between thermal ex
pansion and moisture swelling. When the boundary of a 
composite is subjected to a constant humidity environment 
moisture will seep in through the boundary until a steady state 
of constant c is achieved but this will take much longer (days) 
than for temperature where steady state is achieved after very 
short time. Furthermore, in most applications, one is con
cerned with a polymeric matrix that absorbs moisture, 
containing particles or fibers that do not. Thus these particles 
or fibers act as insulators and their swelling coefficients are 
zero. It follows from (4.1.2) that the effective swelling 
coefficients ft*, are given by 

05 = ft<j> - 0WPklrs (S?siJ - S $ ) (4.1.5) 

whefe 1 indicates absorbing phase. 
Finally it is noted that expressions for effective specific 

heats c*, at constant volume, and Cp, at constant pressure, for 
two-phase materials have been obtained in [82]. To practical 
purposes they are given by the volume fraction-weighted 
averages of the corresponding phase specific heats. 

4.2 Statistically Isotropic Composites. For a two-phase 
material with isotropic phases all tensors in (4.1.3) become 
isotropic. This leads to the simple result 

or* = a, + • 
a 2 - a , 

1/K-, - \/K 
\\/K*-VKx) (4.2.1) 

where K* is the effective bulk modulus and Kx and K2 are the 
phase bulk moduli. This fundamental result has been given in 
[79] and also, independently, in [80-82]. Introducing the exact 
composite spheres assemblage result (3.1.7) into (4.2.1) it 
follows that for that model 

= «j f I +ot2v2 + 
4(K2-K1)(a2~a1)G1v]v2 (4.2.2) 

-* klrs \^rstj ^rsij) ~ *\, W 

3KiK2+4G1(K1vl+K2v2) 

Arbitrary phase geometry bounds for a* which are best 
possible are easily established. The key to the procedure is the 
result (3.1.13a) from which it follows that (4.2.1) is a 
monotonic function of K*, thus replacement of K* by a 
bound in (4.2.1) produces a bound on a*. Introducing the 

492 / Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



bounds (3.1.16) into (4.2.1) and denoting the result (4.2.2) as 
a*(l,2) yields the best possible bounds 

a*( l ,2)<a*<a*(2, l ) (4.2.3) 

when 

( t f 2 -A- , ) («2 -« i )<0 (fl) Kt<K2; G^KG^b) (4.2.4) 

Most materials obey (4.2.4a). If, however, this inequality 
reverses then the bounds (4.2.3) also reverse. 

All results are applicable to moisture swelling. (3* is ob
tained by setting a2 =0 and replacing a, by (3,, the swelling 
coefficient of the absorbent phase. 

4.3 Fiber Composites. A statistically transversely 
isotropic fiber composite has two expansion coefficients, a* 
in fiber direction and a f transverse to the fibers. If fibers and 
matrix are isotropic it follows from (4.1.3) that 

«*=«! + 

ar = ct[ + 

a2-
1/K-, 

- « i r 3(1-2,4) _ j _ -i 
- l/K, L E*L Kt\ 

3 3(l-2i£K 1 0 ( 2 - a i 

1/K-, - \/K L2k* i] 
These results were implicitly given in [79] and explicitly in 
[82]. A detailed derivation is given in [1]. 

To obtain the thermal expansion coefficients for the CCA 
model the results (3.2.9)-(3.2.11) are introduced into (4.3.1). 
For numerical treatment the numerical results for effective 
moduli are introduced into (4.3.1). (Unfortunately, expensive 
numerical analyses of effective thermal expansion coef
ficients, ignoring (4.3.1), still persist.) The results (4.3.1) also 
apply to aligned short fiber composites in terms of their ef
fective elastic properties. They are also easily generalized to 
transversely isotropic phases, [63], thus for carbon and 
graphite fibers. 

Moisture swelling is of particular importance for fiber 
composites. Again the results are obtained by setting a2 =0 
and al=/3l. This yields from (4.3.1) the longitudinal and 
transverse swelling coefficients PI and /3f. 

4.4 Approximations. In view of the unique relations 
(4.1.3), (4.2.1), and (4.3.1) between effective thermal ex
pansion coefficients and effective elastic properties ap
proximate treatments to obtain the former are redundant and 
should be confined to effective elastic properties. 

5 Viscoelastic Properties 

5.1 General. Study of viscoelastic behavior of com
posite materials is of interest primarily because of the con
siderable number of composites that have a polymeric matrix. 
This is the case for most fiber composites, the most common 
polymer being epoxy for unidirectional fiber composites, 
polyimide for elevated temperature applications, and 
polyesters for chopped fiber composites. Because of the time-
dependent properties of the polymer the composite will also 
exhibit time dependence. This implies that deformations grow 
(creep), stresses relax in time, and amplitudes of vibration are 
attenuated. The significance of such effects is magnified at 
elevated temperatures. For a review article on the subject see 
[83]. A comprehensive detailed treatment emphasizing fiber 
composites is contained in [1], 

Analysis of properties of viscoelastic composites is closely 
related to analysis of elastic composites. When a viscoelastic 
composite is subjected to homogeneous boundary conditions 
Ui(S) = efjXjHU) or T,(S) = (PuitjH(t), where H(t) is the 
Heaviside step function, the average strains are e^H(t) in the 
former case and the average stresses are <j°jH(t) in the latter 
case. It follows from linearity that in these cases 

°u(t)=C*Jkl(t)e% 

eij(t)=S*jkl(t)o
0

kl 
(5.1.1) 

Then C*Jkl{t) is defined as the effective relaxation moduli 
tensor and SfJkl(t) is the effective creep compliance tensor. 
These relations assume the usual hereditary form of 
viscoelastic stress-strain relations when strain and stress 
averages are general time functions. When the composite is 
statistically isotropic the effective stress-strain relations 
reduce to the usual isotropic forms in terms of effective bulk 
relaxation modulus K* (t),,shear relaxation modulus G*(t), 
bulk creep compliance I*(t), and shear creep compliance 
J*(t). 

If the problem of determination of internal fields in a 
viscoelastic composite subjected to homogeneous boundary 
conditions is formulated and the Laplace Transform (LT) is 
applied to all equations, the LT problem is entirely analogous 
to the corresponding problem of an elastic composite. Elastic 
phase moduli Cijk, are replaced by transform domain (TD) 
moduli pCijkl (p) where p is the transform variable and lower 
denotes LT. There then emerges a correspondence principle 
for quasi-static properties of viscoelastic composites, Hashin, 
[84]: "The effective TD moduli/compliances of a viscoelastic 
composite are obtained by replacement of phase elastic 
moduli by corresponding phase TD moduli in the expressions 
for effective elastic moduli/compliances of an elastic com
posite with identical phase geometry." In symbols: let ex
pressions for effective elastic properties be written 

Ct,u=FnUVCV,*CV>, ,{g}] 

SJW=/^[eC<»,*C<2> {*)] 
(5.1.2) 

where, the left e superscript denotes elastic property, EC( '") 

denote phase elastic moduli, and [g} denotes geometry. Then 

pC?Jkl(p)=Fukl\pCW(p), pC^ip), . . . ,{g}] 

pStjkl(p)=fiJkl[pC^ip), pC^(p), . . . ,{g)] 
(5.1.3) 

Equations (5.1.3) reduce the determination of quasi-static 
effective elastic properties to LT inversion, provided that 
expressions for effective elastic properties are known. It 
should be noted that in the present context the presence of an 
elastic phase in the composite implies that its properties are 
left unchanged in the replacement scheme (the TD moduli of 
an elastic material are its elastic moduli). 

It has been shown [85, 1] that the values of effective 
viscoelastic properties at times 0, oo are given by the simple 
scheme 

C?jkl(l) = FiJkl[CV(.l), C<2>(°„), . . . ,{*}] 

SS«(S.)=/««[C ( 1 )(S,), c<2>(°„) [g]] 
(5.1.4) 

which implies that initial (final) values of effective relaxation 
moduli and creep compliances are determined by associated 
effective elastic moduli and compliances in terms of initial 
(final) values of viscoelastic phase properties. It has been 
argued [83], that relations of type (5.1.9) could be used to 
approximate effective viscoelastic properties for the whole 
time range, but such "quasi-elastic" approximation must be 
regarded with caution. 

Relaxation moduli and creep compliances are necessary 
information for quasi-static analysis of viscoelastic materials. 
In the important case of steady state vibrations another set of 
viscoelastic properties called complex moduli are in
dispensable. For homogeneous viscoelastic materials the 
complex moduli are defined by the coefficients of linear 
relations between stress and strain amplitudes in steady state 
vibrations; see e.g., Christensen [86]. For composite materials 
the analogous definition is in terms of linear relations between 
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averages of stress and strain amplitudes. This raises a 
problem, for the spatial variation of stress and strain in a 
composite material in a state of vibration can never be SH 
since oscillatory stress and strain in homogeneous bodies can 
never be spatially uniform. In the simplest approach a 
classical approximation of type (2.17) is adopted. Then the 
effective complex moduli are defined for sinusoidally space 
variable average (moving or ensemble) strain and stress as 
follows: If 

eu (x,f) = £(,- (x)e"*< au (x,t) = au (x)e" (5.1.5) 

Then 

°ij(x) = Cfjld{LU))ekl(x) £,y(x) = S5w(ta))ffW(x) (5.1.6) 

where C,*w and S,*w are effective complex moduli and 
compliances, respectively, t = V ^ l , and co is the frequency of 
vibration. For statistical isotropy (5.1.6) reduce to 

~a=3K*(u1}):e s'u = 2G*(pw)eu (5.1.7) 

where the stress and strain amplitude are the usual isotropic 
and deviatoric parts. It is customary to separate complex 
moduli into real and imaginary parts. Thus 

(5.1.8) 
G(iw) = G*'(w) + iG*"(w) 

Loss tangents are defined by 

tan5% =K*"/K*' tan% = G*"/G*' (5.1.9) 

All of (5.1.5)-(5.1.9) are analogous to corresponding relations 
for homogeneous materials, thus for viscoelastic phases of a 
composite material. 

The effective complex moduli are related to effective elastic 
moduli by the correspondence principle for complex moduli 
of composites, Hashin [87]: "The effective complex moduli 
(compliances) of a viscoelastic composite are obtained by 
replacement of phase elastic moduli by corresponding phase 
complex moduli in the expressions for the effective elastic 
moduli (compliances) of a composite with identical phase 
geometry." In symbols 

Q H ( » ) = F S « [ C ( 1 ) ( W ) , C<2>(tco), . . . ,{g)] 

S8HM=/J,*/[C (1>O«), C<2>M ,(g)] 

where the functions on the right sides are the same as in 
(5.1.4) and C(I)(u<>), C(2)(tco), . . . denote the phase complex 
moduli. 

The evaluation of (5.1.10) can be greatly simplified when 
the phase loss tangents are small, which is usually the case [1, 
87]. In this event 

Q«(c J)=F^ /[C<1) '(o J),C(2»'M, . . . ,{g}] 

S^/(«)=/w /[C<1>'(«),ce>'(w) , . . • ,[g)] 

(5.1.10) 

(5.1.11) 

while imaginary parts are given in terms of derivatives of 
(5.1.11) with respect to the components of real parts of phase 
complex moduli, [87]. Examples will be given in the 
following. 

Viscoelastic properties of polymers are strongly tem
perature dependent and thus also the effective viscoelastic 
properties of composites with polymeric constituents 
(generally the matrix). It has been pointed out by Schapery 
[83], that the results given here can be modified for tem
perature dependence by means of a correspondence principle 
when the composite consists of a thermorheologically simple 
phase and an elastic phase. It is also possible to obtain 
thermoviscoelastic expansion coefficients in this case [83]. 
This method fails, however, for composites consisting of 
thermorheologically simple phases with different time shifts. 

5.2. Statistically Isotropic Composites 

5.2.1 Direct Approach. The most important case is a 

viscoelastic matrix containing elastic particles. It can mostly 
be assumed that the matrix is viscoelastic in shear only and 
thus has an elastic bulk modulus K{, shear relaxation 
modulus Gx(t), and shear creep compliance J\(t). Available 
elastic results can be converted into corresponding viscoelastic 
results. As an example for various approaches the expression 
for elastic bulk modulus of the composite spheres assemblage 
is considered to obtain K*(t) of the corresponding viscoelastic 
case. According to (5.1.3), (3.1.7) converts into [84]: 

pK*(p)=Kl+(K2-Ks) 
[3A-,+4pG,(p)]j;2 

3^2+4pG,(p)-3(Ar2-A-,)w2 

(5.2.1) 

If Gx(t) is known only numerically (5.2.1) can be converted 
into an integral equation in the time domain that must be 
solved numerically for K*(t). One possibility to obtain 
analytical solutions is to represent the shear stress-strain 
relation of the matrix by a suitable spring-dashpot model 
whose differential equation is 

P(D)su = Q(D)eu D= — (5.2.2) 

where P and Q are polynomials in D. Simple examples are the 
Maxwell model and "standard solids." It follows from LT of 
(5.2.2) that 

pG(p)=Q(p)/2P(p) (5.2.3) 

Introducing this into (5.2.1) the result can be inverted to 
obtain K*(t). Finally, the theorems (5.1.4) can be utilized to 
obtain K*(0) and K*(oo). The former is merely the elastic 
result (3.1.7) with G^O) and the latter becomes upon 
assuming very small Gt (oo) 

K*(°°) = (vl/K1+V2/K2y
l (5.2.4) 

which interestingly is the lower bound (3.1.13a). For the 
extreme cases of rigid particles (5.2.1) can be inverted in 
general fashion for the whole time domain 

**«)=[*, + j G,(0i>2]/», 

for cavities 

[' rv)=\i/3K1 + -ji (0^2_p 

(5.2.5) 

(5.2.6) 

Such simple results are of course exceptional. 
The case of shear is much more difficult since an exact 

result for G* of an elastic particulate composite for the entire 
range of volume fractions is not available. The dilute con
centration result (3.1.5b) can be transformed to viscoelasticity 
but this is only of academic interest. There is one general 
result for incompressible viscoelastic matrix containing either 
rigid particles or voids. It has been shown [84] that in these 
cases 

G*(t) =Jl(t) 

G , ( 0 J*(t) 

eG* 
= * (5.2.7) 

where the extreme right is the ratio between effective elastic 
shear modulus and matrix shear modulus for same composite 
with elastic incompressible matrix containing rigid particles or 
voids. 

Effective complex moduli are easily obtained by utilization 
of (5.1.10). Assuming again elastic particles 2 and matrix 1 
viscoelastic in shear only (5.1.10) reduce to 

K*{iu)=FK[KuGl(M),K2G2;ig)] 

G*(iw)=FG[Kl,Gl(M),K2,G2,ig}] 
where FK and FG denote expressions for effective elastic 
moduli. Define the matrix loss tangent by 

tan8 = Gr(«))/Gi(co) (5.2.9) 

It has been shown [87], that for small tan<5 (smaller than 0.1, 

(5.2.8) 
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which is usually the case) (5.2.8) can be accurately ap
proximated by 

G"(o1)=FG[Kl,G{(o>),K2,G2,lg}] 

G*"(w) = G?dFG/dG[ 

with a similar approximation for K*. The relations (5.2.8) are 
easily applied to (3.1.7) to obtain the complex bulk modulus 
for the CCA model. Details are given in [1]. For complex 
shear modulus of viscoelastic matrix with rigid particles or 
voids 

G * ( K O ) / G I M = I/-

which implies 

G*'(co) = ^Gi'(«) 

G*"(w) = ^GKw) (5.2.11) 
tanSG* = tan5G] 

where ip is given by (5.2.7). Thus the shear loss tangent of 
viscoelastic incompressible matrix is not changed by rigid 
particles or voids. 

5.2.3 Variational Bounding. Unfortunately the 
variational bounding methods that are so powerful for elastic 
composites are only of limited usefulness for viscoelastic 
composites. In view of the mathematical analogy between 
elasticity problems and Laplace transformed quasi-static 
viscoelastic problems, all bounds on effective elastic moduli 
convert into bounds on Laplace Transforms of effective 
viscoelastic properties. However, a bound on Laplace 
Transform does not convert into a bound on the transformed 
function. 

One special situation where elastic property bounds are 
easily converted is a viscoelastic incompressible matrix with 
rigid particles or voids, discussed in the foregoing (5.2.7). 
Suppose that in the elastic case, bounds are defined by 

It follows that 

^ G ^ O s G ' M ^ + j G i W (5-2.12) 

Another special situation is for times 0, oo when in view of 
(5.1.4) all elasticity bounds convert into bounds in terms of 
viscoelastic properties at times 0, oo. 

Bounding methods for effective complex moduli have been 
given by Christensen [88] and Roscoe [89, 90]. Of special 
interest are the general relations between effective moduli and 
effective complex moduli bounds derived in [90]. However, 
because of the complicated relations between real and 
imaginary parts of complex moduli and compliances such 
bounds are only rarely of practical value. In the case of small 
loss tangents, which is the usual situation in practice, it 
follows from the reasoning leading to (5.1.11) that all ef
fective elastic moduli bounds convert in bounds for real parts 
of effective complex moduli by replacing phase moduli in 
elasticity bound expressions by corresponding real parts of 
phase complex moduli. The situation for bounds on 
imaginary parts is more complicated. Such bounds can be 
established by methods used for the analogous problem of 
lossy dielectrics; see Section 6.3. 

5.2.4 Approximations. In view of the correspondence 
principles, any approximation for an effective elastic modulus 
can be interpreted as an approximation for the LT of an 
effective relaxation modulus or for an effective complex 
modulus. In the first case inversion into the time domain is 
required, which may be very difficult. It is also quite possible 
that the inversion will aggravate the inaccuracies introduced 
by the approximation. In the second case the separation into 
real and imaginary parts may introduce additional ap
proximations. 

Laws and McLaughlin [91] have used the first version of the 
SCS to estimate viscoelastic properties of a particulate 
composite based on a time domain analysis. It would seem 
preferable to use the generalized SCS version. The required 
analysis for shear modulus would of course be very difficult 
and it appears that no attempt in this direction has been made. 

An important viscoelastic composite is a chopped fiber 
composite, e.g., glass fibers in polymeric matrix. As has been 
mentioned before, the only available analytical approach for 
effective modulus is the first version of the SCS [37]. 

5.3 Fiber Composites. The case of interest is a 
unidirectional fiber composite consisting of viscoelastic 
matrix and elastic fibers. The effective stress-strain relaxation 
type relations are described by the viscoelastic hereditary 
analogue of (3.2.1) and (3.2.2) in terms of relaxation moduli 
n*(t), l*{t), k*(t), G*L(t), and G*T(t). This defines time-
dependent stress in terms of given strain history. For creep, 
thus time-dependent strain in terms of given stress history, it 
is necessary to use the viscoelastic analogue of the elastic 
strain-stress relations (3.2.3) in terms of creep compliances 
et(t),e*T(t),cl(t),c*T(t),g*L(t), and g*T{t) which are the 
viscoelastic analogues of the elastic compliances 1/E£, 1/Ef, 
-vl/El, -v*T/E*T, \/G*L and 1/Gf, respectively. All of the 
interrelations between elastic properties now apply in trans
form space and thus become quite complicated in the time 
domain. 

Results and methods discussed in Sections 5.1. and 5.2 are 
all applicable to fiber composites. In the direct approach the 
CCA results (3.2.6)-(3.2.9), if necessary modified for 
anisotropic fibers, can be interpreted as Laplace Transforms 
of effective viscoelastic properties. Assuming matrix 
viscoelastic in shear, only elastic matrix properties G,, kx, 
and i>! are replaced by pGl and by 

v, (p) =(3tf, -IpG.VlOK, +pGi) 

Some simple results obtained in this fashion are 

E! (0=E, ( f l i> i+E 2 i ; 2 e*L{t)=ei{t)v1+v2/E2 (5.3.2) 

where E,(0 and e^O are matrix Young's relaxation modulus 
and creep compliance, respectively. Since E 2 > > E ! ( 0 the 
time-dependent part of these expressions is generally 
negligible and thus for practical purposes the fiber composite 
is elastic in fiber direction. 

For fibers with shear modulus infinitely larger than matrix 
shear modulus (not carbon, graphite) 

l + l > 9 1 — V-, 
01 = 0,(1)- gW)=g1(t)- (5.3.3) 

1 - l>2 1 + V2 

where gt (t) is matrix shear creep compliance. 
Other results are not as simple. For detailed analysis see [1]. 

Some important general conclusions are that the time 
dependence of n*(t), l*(t), k*(t), and c*L(t) is weak. Such 
results may be conveniently obtained by using the final and 
initial value theorems (5.1.4). The situation with respect to 
G*T(t),g*T{t), E*T(t), "fU), and cf(t) is much more 
complicated since only bounds are available for their elastic 
counterparts. If elastic bounds are close, any of them that is 
analytically sufficiently simple can be regarded as an ap
proximate result and utilized with the correspondence 
principle to (it is hoped) obtain the corresponding viscoelastic 
results. This is the situation for carbon or graphite reinforced 
polymers where the bounds on Gf and Ej- are extremely close, 
[63]. 

6 Conduction 

6.1 General. The subject under consideration is steady 
state conduction through a composite material to be 
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charaterized by an effective conductivity tensor. General 
aspects of the problem have already been discussed in Part 2. 
While the present discussion will be in the context of thermal 
conduction it should be realized that the problems of 
thermal conduction, electrostatics, magnetostatics, and 
diffusion are mathematically analogous. Therefore 
everything said applies to all of these. A list of analogous 
quantities is given in the following. 

Jeffrey [94] on the basis of the Batchelor-Green method [15] 
and by McCoy and Beran [95]. For randomly distributed 
identical spheres the analysis of [94] gives a2 as a function of 
Hi/pi. The largest value of a2 isa2(.<x) = 4.5l. 

The composite spheres assemblage (CSA) model is easily 
analyzed for conductivity, [96]. The result is 

't* = " I + T 7 ? ^TTTTTT (6"2'3) 

1/(^2 - m ) + y,/3/J. 
Physical Subject 

thermal conduction 

electrical 
conduction 
electrostatics 

magnetostatics 

diffusion 

<P 

temperature 

potential 

potential 

potential 

concentration 

H = - V v i 

gradient 

intensity 

intensity 

intensity 

gradient 

M 

thermal 
conductivity 
electrical 
conductivity 
permittivity 

magnetic 
permeability 
diffusivity 

q 

heat flux 

current 
density 
electric 
induction 
magnetic 
induction 

The subject of diffusion is of particular current interest for 
composite materials in the context of moisture absorption. 

It is helpful to realize that there is a strong conceptual 
relation between the problems of effective elastic properties 
and of effective conductivity. Every theorem and result in one 
area has its counterpart in the other. The conceptual relation 
between elasticity and conduction is summarized in the 
following table: 

«; = 
«y = 
atJ = 
T, = 

Cijkl = 

Sijkl = 

Elasticity 

displacement 
strain 
stress 
traction 
elastic moduli 
compliances 
rigid phase 
empty phase 

<P 

q„ 

Conduction 

temperature 
gradient 
flux 
normal flux component 
conductivities 
resistivities 
superconductor 
insulator 

All of the methods, models, and results for elastic com
posites have their conductivity counterparts. The mathematics 
of the conductivity problems is considerably simpler than that 
of the elasticity problems since vectors take the place of 
second rank tensors and the scalar Laplace equation takes the 
place of the vectorial elasticity displacement equations. 

6.2 Statistically Isotropic Composites 

6.2.1 Direct Approach. When the composite is 
statistically isotropic the effective conductivity and resistivity 
tensors appearing in (2.4) assume the form 

li*U = H*8v P!J = P*SU / i V = l (6.2.1) 

Let a two-phase composite material body be subjected to the 
homogeneous boundary condition (2.2a). Then LL* can be 
expressed in the form 

H* = HI + (fi2 - A*i )(^}2)/^?)^2 ( n o s u m o n 0 (6.2.2) 

which is the counterpart of (3.1.3). An analogous definition 
can be given in terms of flux averages, see e.g., reference [42], 

Equation (6.2.2) is the basis for dilute concentration results 
for ellipsoidal or spherical particles 2 embedded in a matrix 1. 
The temperature gradient in an ellipsoidal inclusion when the 
far temperature field is linear is uniform and is a function of 
ellipsoidal axes, ji, and /x2 and orientation of the ellipsoid. 
Thus (6.2.2) is easily evaluated for randomly oriented 
ellipsoids by suitable averaging. The special case of spherical 
particles appears to be, historically, the first exact solution for 
an effective property of a composite material, Maxwell [92]. 
For discussion of various dilute concentration results see [93]. 

The problem of determination of the second term in a 
concentration expansion of type (3.1.6) has been treated by 

Another model which has been treated is a cubical array of 
equal spheres in matrix, Rayleigh [97], refined by Meredith 
and Tobias [98], McPhedran and McKenzie [99], and 
Bergman, [100]. It is interesting to note that the results for 
this model and for the CSA (6.2.3) are numerically very close, 
up to 40 percent particle volume fractions [101], where they 
begin to diverge. (Note that a cubical array is isotropic for 
conductivity but not for elasticity.) This divergence is easily 
understood since in the cubical array, particle volume frac
tions cannot exceed 52 pecent, i.e., close packing, while in the 
CSA model 100 percent volume fraction of particles is 
theoretically possible. Up to 40 percent volume fraction the 
results agree very well with experimental data [101]. It may be 
recalled that a similar situation has been encountered with 
respect to fiber composite elastic moduli for hexagonal array 
and composite cylinder assemblage results. As in that case it 
may be conjectured that the effective conductivity of a 
statistically isotropic particle composite depends primarily on 
volume fractions and only insignificantly on the statistics of 
sphere size and locations as long as the spheres are "not 
close." 

The statistical approach for conductivity in particular and 
for heterogeneous media in general originates with a 
pioneering paper by Brown [102] in which it was shown that 
ix* for a two phase medium is given by the series. 

^ . . - I ( £ ^ ) ' . , ^ ( i . , H - ^ 1^2 

+ vU ')ra + (6.2.4) 

where X is a complicated integral involving three and two-
point probability functions of the phase geometry. It is seen 
that the first two terms define the case of weak 
inhomogeneity. This has been directly derived by Beran and 
Molyneux [103], on the basis of statistical field analysis of the 
weakly inhomogeneous case. For further aspects of statistical 
analysis see Beran [4, 104]. 

6.2.2 Variational Bounding. The basis for variational 
bounding of conductivity is the definition (2.8) of con
ductivity which for statistically isotropic composites assumes 
the form 

Qh 
l 
•^'HfitV Qq=~miV 

2LI* 
(6.2.5) 

Application of the classical variational principles for steady 
state conductivity (these are the counterparts of the principles 
of minimum potential and complementary energies of 
elasticity) in conjunction with linear admissible temperature 
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or constant admissible fluxes easily yields the elementary 
bounds 

1 
- < / * * < / * (6.2.6) 
V-

These were first derived by Wiener [105] by very complex 
methods. 

Improved bounds in terms of volume fractions have been 
derived by Hashin and Shtrikman [96], on the basis of 
variational principles involving the polarization vector. These 
bounds are: 

v2 
M (-) =/^i + 777 r- 7z— (a) 

1/0*2 - / x , ) + y , /3 / i , 
(6.2.7) 

V\ 
M*(+)=ft>+ 777 r- 77— (b) 

l / ( / i , - / z 2 ) + y 2 / 3^ 2 

It is seen that (6.2.7a) is the same as the CSA result (6.2.3) and 
therefore (6.2.76) coincides with a CSA result where the 
particles are of material 1 and the matrix of material 2. 
Therefore the bounds (6.2.7) are best possible in terms of 
volume fractions and their improvement requires additional 
geometric information. Bounds have also been given in [96] 
for any number of phases. It is of interest to note that if the 
bounds (6.2.7) are expanded in series such as (6.2.4) the first 
two terms are identically equal to the first two terms of 
(6.2.4). An interesting derivation of the bounds (6.2.7) has 
been given by Bergman [ 106]. 

Various bounds in terms of additional statistical in
formation have been derived. For discussion see [32, 104], 
Prager [107] has shown that a known value for effective 
conductivity can be used to obtain better bounds than (6.2.7) 
for another two-phase material with the same phase geometry 
but different phase properties. 

The bounds (6.2.7) are not useful when one of the phases is 
highly conducting relative to the other. Unfortunately, all of 
the improved bounds in terms of higher order statistical in
formation such as three-point correlations do not provide a 
practical answer to this problem because the statistical in
formation is more difficult to measure than the effective 
property. Even such improved bounds are not close enough 
since statistical description in terms of the usual n-point 
probabilities or correlations cannot dectect which phase is 
matrix and which phase is particles. This topological 
distinction is, however, of primary importance for the case 
under consideration. 

If a random two-phase composite contains a small amount 
of highly conducting phase 2 the chances are that this will be 
in the form of particles. Then n* will be governed by the 
poorly conducting matrix 1 and will be close to the lower 
bound. If the relative volume of phase 2 is increased it will at 
some volume fraction start to form a continuous skeleton and 
thus ix* will increase dramatically, almost discontinuously, 
and will become close to the upper bound. This phenomenon 
is called percolation and its initiation is called percolation 
threshold. Discussion of this important phenomenon is not 
within the scope of the present survey. For literature and 
discussion see, e.g., reference [108], 

6.3 Anisotropic and Fiber Composites. For a trans
versely isotropic fiber composite the conductivity effective 
constitutive relations (2.4) assume the form 

ql=li*LHl q2=fj,*TH2 q3 = n$H3 (6.3.1) 

where xx is fiber direction, JX*L is effective longitudinal con
ductivity, and nr is effective transverse conductivity. 

It is easily shown, e.g., reference [42], that 

IJ.i = ixlv]+ii2v2 (6.3.2) 

for any cylindrical fibrous phase geometry. The problem of 
fi*T determination requires the solution of a plane potential 
problem with interface conditions (2.6) in the transverse plane 
and plane homogeneous boundary conditions of type (2.2). 
Examination of the governing equations reveals that this 
problem is entirely analogous to the longitudinal shearing 
problem which must be solved to determine the longitudinal 
shear modulus G*, Section 3.2.5. This may be called the 
longitudinal shearing-transverse conduction analogy. It 
follows that [1], if 

Gt=F(GuG2,{g}) (6.3.3) 

then 

rt=F(pltlt2,ig}) (6-3.4) 
where {g} denotes interface geometry. This analogy is also 
valid for numerical analysis results as has been noted for the 
case of square arrays of circular fibers by Springer and Tsai 
[109]. It then follows [1, 110] from (3.2.9) that for the 
composite cylinder assemblage model 

/*?• = /*! + 777 "L n (6-3 '5) 

l / ( /*2~ Ml) + Vi/2lXl 

Keller [111] has shown that for a periodic fiber composite 
with two axes of symmetry (e.g., a rectangular array of 
circular fibers) the two effective conductivities in the principal 
transverse directions obey a simple relation. For the case of a 
square array with equal conductivity /xj- in these two direc
tions this relation assumes the form 

M7-(Ml>M2)A'7'0*2.Ml) = /ilM2 (6.3.6) 

If /^j. is insensitive to interchange of phase 1 with phase 2 this 
yields the simple result 

nf = V/x7/̂ 2 (6.3.7) 

Some geometries for which (6.3.7) is valid are alternating 
patterns of equal squares (checkerboard) and regular 
hexagons. Keller stated that (6.3.7) is also valid for 
statistically transversely isotropic fibrous material of random 
geometry which is insensitive to phase interchange. Such a 
situation occurs for completely random mixtures of cylin
drical phases of 0.50 volume fraction each. Keller's conjecture 
was proved by Mendelson [112]. However, all of these results 
are not of much practical value for fiber composites. 

The longitudinal shearing-transverse conductivity analogy 
implies that all shear modulus bounds convert directly into 
transverse conductivity bounds. It follows that the best 
possible bounds transform into similar bounds for any 
transversely isotropic fibrous material. Thus [1, 110] 

(6.3.8) 

^ < + > ^ 2 + i 7 o ^ y w 2 ^ 
If the phases are transversely isotropic, ^ and JX2 are their 
transverse conductivities. 

Bounds on /xf in terms of statistical information (three-
point correlation functions) were given by Beran and Silnutzer 
[113] and Hori and Yonezawa [114]. Prager type bounds (in 
terms of known conductivity for certain specified values of 
phase conductivities) by Schulgasser [115, 116] who also 
discussed statistical bounds. Bounds for transversely isotropic 
composites consisting of matrix with aligned spheroidal 
particles or circular cracks have been derived by Willis [26]. 

6.4 Lossy Dielectrics. When a lossy dielectric is sub
jected to sinusoidally alternating potential the induction and 
intensity vectors are not in phase. If the phase induction is 
He1"' and the intensity is eml then these are related by 

V = ji(io>)H (6.4.1) 
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where 

Ji(ioj) = ^'(o)) —t/x"(u) (6.4.2) 

It is seen by comparison with viscoelastic vibrations, Section 
5.1, that (6.4.2) is the analogue of the complex modulus. Here 
it' is called the dielectric constant, \>." which is customarily 
taken as negative-the loss factor, while the loss tangent is 
defined by 

tanfi = /*"/>' (6.4.3) 

A composite material consisting of lossy dielectric phases 
has an effective complex dielectric constant or permittivity 

A*(iw) = /i*'(co)-i/i*"(w) (6.4.4) 

which relates average induction amplitude to average intensity 
amplitude. It follows just as in viscoelasticity that if the 
permittivity for nonlossy phases is 

?=F{jLuVat . . . {g}) (6.4.5) 

then the complex permittivity is 

£*( iu)=F[£iM,i&2M. . . . {g}] (6.4.6) 

where [g] denotes the phase geometry. This is the complete 
analogue of the complex moduli correspondence principle 
(5.1.10) and permits conversion of any effective permittivity 
result into a complex permittivity result. If the phase loss 
tangents are small, equation (6.4.6) converts into 

li"(u)=Flpi(a),ni(u), . . . (g)] (a) 

dF dF <6-4-7) 

d/x, d i t 2 

All of these results have been given by Schulgasser and Hashin 
[117]. It follows for example that the CSA result (6.2.3) 
converts at once into a corresponding result for n*' while it*" 
must be found in terms of the derivatives of (6.2.3) with 
respect to JX[ and ^ • 

The bounds (6.2.7) convert into best possible bounds for 
/x*' for any statistically isotropic two-phase geometry. The 
situation with respect to it*" bounds is much more com
plicated. Such bounds have been derived in [117] for small 
loss tangent. Bounds for /x*' and n*" without this sim
plification have also been derived by Milton [118] and 
Bergman [119], 

6.5 Approximations. Many approximations have been 
derived over the years. For comprehensive discussion see 
Boettcher [93] and Landauer [108]. The CSA result (6.2.3) has 
been derived as an approximation by a number of scientists in 
the 19th Century, Mossotti in 1850, Clausius in 1879, Lorentz 
in 1868, and Lorenz in 1880. For historical details see [108]. 
The self-consistent scheme has been applied in the versions 
discussed in Section 3.1.4. In the first version, in which a 
sphere is directly embedded in the effective medium, by 
Bruggeman [120]. This is sometimes called symmetric ef
fective medium theory in the conductivity context. The result 
is 

±l^Vl + J^ZJ^V2=o (6.5.1) 
l*l+2lt M2+2/X* 

This appears to be the initiation of the SCS to composite 
materials. Similar results have been obtained by Landauer 
[121]. 

The generalized SCS with Jj3 = y2 (see Section 3.1.4) has 
been applied by Kerner [122] with some unnecessary 
assumptions. The result is again (6.2.3). The case of arbitrary 
7] has been investigated by Hashin [42]. It was shown that rj is 
restricted to the range i>2 < r/3 < 1 and that the results 
corresponding to this range define a family of nonintersecting 
curves that densely cover the region between (6.1.7a) and 
(6.4.1). It is not clear which member of this family of SCS 
results is to be preferred. 

The differential scheme discussed in Section 3.1.4. has been 
applied to the present problem by Bruggeman [120] and this 
appears to be the origination of the method. 

7 Failure 

7.1 Introduction. The problem of the analysis of failure 
of composite materials is by an order of magnitude more 
difficult than the problem of physical property prediction 
which has been discussed until now. When a composite 
specimen is subjected to increasing load and/or temperature, 
microfailures will develop at some stage. These may be in the 
form of matrix cracks, fiber ruptures, interface separation, 
and local plastification. As loading continues they will 
multiply and ultimately merge to produce catastrophic 
failure. The failure process described cannot be followed 
analytically since: (a) knowledge of microfailure criteria is 
incomplete; (b) the stresses and strains that produce 
microfailures cannot be analytically obtained since they are 
strongly dependent on the details of microstructure, which are 
not known; and (c) even if a model of microstructure is 
assumed, stress analysis in the presence of interacting 
microfailures is a prohibitively difficult problem. While the 
problem of microfield determination also arises in property 
analysis, its implications are different in that context since 
effective properties are relations between averages and thus 
errors in details are not necessarily significant. Furthermore, 
the powerful variational bounding method, which can be 
applied with incomplete definition of microstructure, is not 
available for the failure problem. 

In spite of these difficulties, much valuable work has been 
done in failure prediction but the treatment must necessarily 
be qualitative rather than quantitative, in a "strength of 
materials" rather than "theory of elasticity" spirit. The 
present discussion will not in any sense aim at reviewing the 
immense existing body of literature but will emphasize 
available analytical ideas and guidelines. Almost everything 
said is concerned with fiber composites. Static and fatigue 
failure of unidirectional fiber composites are discussed from 
the point of view that they are the building blocks of 
laminates. Finally, static and fatigue failure of laminates are 
discussed in one Section. 

7.2 Static Failure: One Stress Component. In 
"homogeneous" materials it is customary to determine 
failure when only one stress component, e.g., uniaxial stress, 
is active, experimentally, and to construct failure criteria for 
combined stress in terms of one-dimensional ultimate stresses. 
An excellent review of the subject has been given by Paul 
[123], A similar point of view may be adopted for composite 
materials and this will be discussed in the next section. In this 
section we consider the important subject of the relation of 
one-dimensional average ultimate failure stresses to the 
microstructure and to the constituent properties. 

Very little analytical work has been done for the case of 
statistically isotropic composites, e.g., a matrix reinforced 
with particles. The analytical difficulties are quite staggering 
since it is first necessary to obtain the stress fields, which by 
itself is an intractable problem, and to utilize these to draw 
conclusions about progressive and ultimate failure. In the case 
when the matrix can be regarded as ideally plastic and the 
particles as rigid, limit analysis methods are, in principle, 
applicable. However, the construction of nontrivial ad
missible stress or velocity fields is an extremely difficult 
problem. Drucker [124] has shown that when it is possible to 
pass a principal shear plane without intersecting particles 
through the matrix, a highly theoretical state of affairs, the 
limit load is equal to that of a specimen without particles. It 
may also be easily shown that when there is no such 
geometrical restriction the matrix limit load is a lower bound 
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on the composite limit load. For a porous material Hashin 
[110] has shown that limit stress for uniaxial stress or shear 
stress is bounded from above by a0(\ -c) where a0 is matrix 
limit stress and c is the pores volume fraction. The result for 
shear is analogous. 

Experimental evidence shows that reinforcement of a 
compliant and weak matrix with stiff and strong "equiaxed" 
particles does not materially improve the strength and may 
even decrease it. Substantial increase in strength is obtained 
when the particles are elongated and randomly oriented. An 
important example is a chopped fiber or whisker-reinforced 
composite. However, any reliable analytical treatment of 
strength does not appear to be available. 

In the case of a unidirectional fiber composite the following 
failure stresses are of interest: at = tensile strength in fiber 
direction, al = compressive strength in fiber direction, af = 
tensile strength transverse to fibers, of = compressive 
strength transverse to fibers, TL = longitudinal shear strength 
(<j12 or <713), and TT = transverse shear strength (ff23)-

A great deal of work has been done in the context of at-
The oldest approach consists of the assertion 

°L=°LfVf+OmVm (7.2.1) 

where aLj is fiber tensile strength, am is matrix tensile 
strength, and vj and vm are the volume fractions. This would 
be rigorously correct if fibers and matrix reached their 
respective failure stresses simultaneously and the Poisson's 
ratios of the two constituents were equal. The last 
requirement is practically unimportant and the first one is 
numerically unimportant if aL/> >om. The failure mode for 
which (7.2.1) is applicable is a more or less plane transverse 
fracture of a tension specimen. For further discussion and 
results in this context see Kelly [125]. 

The most stringent underlying condition (7.2.1) is the tacit 
assumption that aLf is a fixed definite number. However, 
fiber strengths are often considerably scattered and are also 
functions of fiber length. A well-known analysis of tensile 
strength taking this into account has been given by Rosen 
[126]. The failure mechanism underlying this work is 
progressive random fiber ruptures. The strength of the broken 
parts is modified since the length has changed. In addition, 
the buildup of shear stress at a broken end diminishes fiber 
longitudinal stress in the shear region thus further reducing 
fiber-effective length. A fiber's carrying capacity is exhausted 
when its length has diminished to the point where it cannot 
transfer appreciable longitudinal stress (at which point it acts 
essentially as a particle). The failure mode consists of 
cumulative rupture of fibers resulting in a jagged and 
irregular fracture surface. This approach to predict tensile 
strength in fiber direction has been extended and further 
developed in numerous papers, Rosen and Zweben [127, 128], 
Hedgepeth and Van Dyke [129], and in particular, the 
statistical analyses by Phoenix [130, 131] and associates. 

The failure mode in compression in fiber direction 
essentially consists of fiber buckling within the matrix. This 
has been experimentally verified and an approximate two-
dimensional analysis to determine this buckling load has been 
given by Rosen [132] and Schuerch [133]. The result is 

aZ=G„,{\-vf) (7.2.2) 

where G„, is isotropic matrix shear modulus. 
Whatever results are available for longitudinal strength are 

made possible by the simple cylindrical geometry of fibers and 
matrix. In the case of transverse strength the situation is as 
difficult as for a particulate composite since the internal stress 
fields are unattainable. Attempts to represent the composite 
by a periodic array and to draw conclusions from the stress 
fields in this case do not appear useful since the actual stress 
fields will have vastly different local peaks. Limit analysis 
methods have been employed by Hashin [134] to repeat 

Drucker's argument that when a shear plane can be passed 
through the matrix without cutting fibers the limit stress is 
equal to the matrix limit stress. Bounds on limit shear stresses 
have been obtained by Shu and Rosen [135] and by 
McLaughlin [136-138]. All of these results are not of much 
practical value for they apply only to ideally plastic matrix 
and rigid fibers. The only fiber composite for which this has 
any relevance is boron/aluminum. Graphite and carbon fibers 
are transversely much less stiff than aluminum, and polymers 
are certainly not ideally plastic. Experience shows that the 
transverse tensile and shear strengths are of the order of 
matrix strength and quite lower than this in the case of carbon 
and graphite/aluminum. For review articles on the problems 
discussed here see Rosen [139], Chamis [140], and Phoenix 
[131]. 

7.3 Static Failure: Combined Stress. Unidirectional 
fiber composites are primarily utilized in the form of 
laminates consisting of differently oriented parallel layers or 
laminae. The simplest state of stress in any lamina is plane. At 
laminate free edges the internal state of stress is generally 
three dimensional. It is therefore necessary to establish failure 
criteria for combined states of stress. It is generally assumed 
that the failure criterion can be expressed in terms of average 
stress components. It is in principle possible to use failure 
criteria in terms of strains but this is less convenient and this 
subject will not be considered here. For discussion, see Wu 
[141]. 

It is generally assumed that failure criteria are quadratic 
polynomials in stress. It should be emphasized that this is an 
assumption of convenience and curve fitting nature, although 
the quadratic nature of stress energy has led to attempts of 
physical interpretation of the quadratic approximation. The 
coefficients in the stress polynomial must be determined in 
terms of simple failure information, preferably single-
component ultimate stresses. In one of the first contributions 
to the subject Tsai [142] assumed that Hill's [143] yield 
criterion for orthotropic plastic materials could be used as a 
failure criterion. Hoffman [144] added linear terms for the 
purpose of accounting for different tensile and compressive 
ultimate stresses. The problem with these criteria is that they 
imply that isotropic stress cannot produce failure which is 
incorrect for an anisotropic material. This was corrected by 
Tsai and Wu [145] who represented the failure criterion of any 
anisotropic material as a general quadratic in the stresses 

Fijki °v °ki + Ftj a ij = 1 (7.3.1) 

where Fjjkl and Fu are coefficients to be determined. Similar 
criteria have been proposed in the Russian literature; see e.g, 
Wu [141]. It is customary to abbreviate the coefficient indices 
according to the scheme 11 = 1, 22 = 2, 33 = 3, 13=4, 23=5, 
and 12 = 6. If the indices denote the material axes of a fiber 
composite with xy in fiber direction, terms with odd powers in 
shear stresses must be rejected since the material is insensitive 
to change of sign of shear stress. For transverse isotropy the 
surviving coefficients are 

Fn = \/atal F^Vot-UoZ 

F22=Fn = l/afaf F2=Fi = l/of—l/o:f 

F44=F66 = l/rl F5i = \/r\ <7-3-2> 

F23 =2/' OJOJ — \/T\ 

and Fx2 • This coefficient must be found from a biaxial failure 
experiment involving an and a22. Since, however, the 
material has different strengths in tension and compression 
there are four different failure pairs au , a22 and therefore Fn 

has four different values F?2
 + , F&~ , Ff2

 + , and F{~2 ~~ . This 
contradicts the basic assumption underlying (7.3.1) that the 
failure criterion can be described by a single continuous 
polynomial. Another problem with (7.3.1) is that it does not 
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predict the failure mode of the composite. For further 
discussion of these aspects see [146]. 

These problems can be avoided if the different failure 
modes of the fiber composite and the primary stresses con
tributing to them are identified and each mode is modeled 
separately by a quadratic. The principal modes are: tensile 
fiber mode described by fiber rupture; compressive fiber 
mode described by fiber buckling; tensile matrix mode 
described by plane failure surface parallel to fibers with 
°22 + ff33 > 0 a n d compressive matrix mode with a22 + <r33 <0 . 
Experimental evidence for some of these modes, obtained 
with off-axis specimens of various composites has been 
described in [147-149]. Quadratic failure criteria 
corresponding to these various modes are, Hashin [146]: 

Tensile Fiber Mode 

( f f„ /<tf ) 2 +(o? 2 +o? 3 )Ai=l ffi,>0 (7.3.3) 

Compressive Fiber Mode 

an = -aZ an <0 (7.3.4) 

Tensile Matrix Mode 
ff22 + <?33 > 0 

(<r22 + ff33)
2/<r?2 + (°23 - 022°n)/rT+ (oh + °hVT2L = 1 (7-3.5) 

Compressive Matrix Mode 

^22 + ^33 < 0 

(ff22 + a33)[(fff/2rr)
2 - l]/af+ («r22 + (T33)

2/4T*~ 

+ (a2
22 - °22°n)/Tr+ (ffn + <AiVA = 1 (7-3.6) 

Denoting the left sides of the four failure criteria by Ft{a) 
failure for a given stress state is identified by the one for 
which F,-(o)=l while for the remaining ones Fj{a)<\. This 
procedure also identifies the failure mode of the composite 
which is of significant importance for design considerations 
and finite element analysis of progressing structural failure. 

There is much need for critical comparative experimental 
examination of the various failure criteria proposed. A 
significant problem is the incorporation of scatter of test data 
into the failure criteria. A tentative approach to this problem 
has been proposed in [150]. 

7.4 Fatigue Failure of Unidirectional Fiber Composites. 
The subject of concern is failure of unidirectional fiber 
composites under cyclic average stress. Any such cyclic stress 
component is characterized by the maximum amplitude ajj, 
the minimum amplitude a-,, and the cycling frequency. 
Alternatively, it is customary to use the quantities: mean 
stress a)" = 1 /2(ff2

/ + a},),alternating stress og- = \/2(a\ —a)j), 
and stress ratio R = afj/ajj. Tensile-tensile cycling is 
characterized by 0 < i ? < l , tensile-compressive by R<1, and 
compressive-compressive by R > 1. Cycling at maximum 
amplitude which is smaller than the static ultimate stress will 
produce failure after N cycles, generally called fatigue 
lifetime. The lifetime is a function of the two amplitudes and 
of the frequency. It is however frequently a weak function of 
the latter for a range of frequencies of practical interest and 
therefore this effect will be disregarded. 

In the basic case of constant amplitude cycling the plot of 
lifetime N, generally plotted as log N, versus maximum stress 
amplitude is known as the S-N curve. Because of the large 
scatter, /Vis a random variable for any given stress amplitude. 
The probability distribution function of N may be described 
by the log-normal or by the Weibull distribution. The 
elementary S-N curve is described in terms of the mean or the 
median of log N. More sophisticated, P-S-N curves, are 
defined parametrically in terms of probability of failure. 
Since the unidirectional fiber composite is anisotropic there 
are different S-N curves in different directions. In analogy 
with static failure stresses defined in Section 7.2 one may 

define the S-N curves aL(R,N), aT(R,N), TL(R,N), and 
TT(R,N) as basic fatigue failure information. The problem of 
predicting such S-N curves on the basis of microstructural 
progressive failure is exceedingly difficult, much more so than 
the corresponding static failure problem, and therefore no 
attempt will be made to discuss whatever scant literature there 
is available on this subject. 

The two major problems in analysis of fatigue failure of 
unidirectional fiber composites are: 

1. Establishment of fatigue failure criteria for combined 
cyclic stress. 

2. Prediction of lifetime under variable amplitude cycling. 

The first problem is of particular significance for fiber 
composites since they are generally used as laminates; see 
Section 7.3. The second problem is known as the cumulative 
damage problem and has been the subject of much in
vestigation in the context of metals. It is of great practical 
importance since cyclic loadings in practice are generally of 
variable amplitude. 

Development of failure criteria for cyclic combined stress is 
quite similar to treatment for static failure criteria. In the 
general case of three-dimensional cyclic stress there are the 12 
stress amplitudes ajj and ajj. In the event that the stresses do 
not cycle in phase there are also in addition five mutual phase 
lags. A failure criterion is defined as a functional relationship 
of these 17 variables that produces failure after a specified 
number of cycles N. This defines a family of failure criteria 
with parameter TV. For discussion see [150]. Here we shall be 
concerned only with the simple but practically important case 
when all stresses cycle in phase and all R ratios of the stress 
components are the same. Then the failure criteria family 
becomes 

F(ajJ,R,N)=l (7.4.1) 

where a,-, implies maximum amplitude. For R = 1 or for 7V=0, 
equation (7.4.1) reduces to the static failure criterion. 

Fatigue failure testing of off-axis coupons reveals that in 
tensile-tensile fatigue there are two distinct failure modes, {a) 
fiber mode defined by fiber rupture, and (ft) matrix mode 
delivered by a sudden crack along fibers. This phenomenon 
has been described by Hashin and Rotem [147] for 
glass/epoxy. The same failure modes occur for 
graphite/epoxy, Awerbuch and Hahn, [151]. The situation 
for tensile-compressive and compressive-compressive cycling 
is less understood; see e.g., reference [150] for discussion. The 
metal fatigue phenomenon of slow propagation of one 
dominant crack does not occur in unidirectional fiber com
posites. In the fiber mode, failure occurs after accumulation 
of many microcracks or other flaws producing an irregular 
rupture surface. In the matrix mode, one crack propagates 
instantaneously along the fibers producing a plane fracture 
surface [147, 151]. The failure modes described are of 
phenomenological nature. A discussion of failure modes in 
terms of micromechanisms has been given by Talreja [152]. 

Adopting again the point of view that fiber and matrix 
modes should be modeled separately, exploiting the transverse 
isotropy of the unidirectional composite, and using a 
quadratic approximation, it has been shown, Hashin [150], 
that for fully reversed cycling, R = - 1, the failure criteria are: 

Fiber Mode 

(a11/ffL)2+(a2
2 + a?3)/T! = l (7.4.2) 

Matrix Mode 

[(̂ 22 + a33)/aT]2 + ( 4 , - (T22<r33)/T
2
r + (a2

2 + a2
3)/Ti = 1 (7.4.3) 

where aL = aL(-\, TV), oT = oT(- \,N), TL=TL(-1,N), and 
TT = r r ( - 1,7V) are the S-N relations for fully reversed cycling 
of stress in fiber direction, stress normal to fiber direction, 
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longitudinal and transverse shear stress, respectively, and xx is 
fiber direction. In the important case of plane cyclic stress in 
the xxx2 plane, which is appropriate for a fiber composite 
lamina, equations (7.4.2) and (7.4.3) reduce to 

Fiber Mode 

Matrix Mode 

{a21/aTf + {an/TLf = 1 

When the cycling also has mean stress, additional coefficients 
appear in the failure criteria which must be determined by test 
data for two combined cyclic stresses. However, the results 
(7.4.4) are in reasonable agreement with tensile-tensile off-
axis test data, R = 0.1, reference [147]. 

There is much need for systematic experimental work to 
investigate failure modes in tensile-compressive and com
pressive-compressive cycling. Unfortunately, most of ex
perimental work is concerned with laminates. A very 
significant problem is the large scatter of fatigue test data. 
The failure criteria discussed in the foregoing as well as all 
others used in the literature are of deterministic nature. It is 
customary to interpret them in a mean sense but there is no 
firm foundation for this assumption. A fatigue failure 
criterion should predict probability of failure or at least-
means and variances of failure loads. A tentative approach to 
this problem has been outlined in [150]. 

Next the cumulative damage problem is considered. The 
goal is to predict lifetime under specified cyclic loading 
program. Since such lifetime is a random variable the problem 
is of statistical nature. In spite of the large amount of work 

done for metals the problem is still unresolved in that case. 
Much less is known in the case of fiber composites. There 
have been two major approaches for metals. In the first, test 
data information for simple cyclic loading, such as S-N data, 
are used to predict lifetimes for complicated cyclic loadings. 
The most well-known result in this context is the simple 
Palmgren-Miner rule, which is, however, unreliable. In the 
second approach it is attempted to predict the growth of a 
single dominant crack under cyclic loading program. This 
approach is not applicable to unidirectional fiber composites 
since, as has been explained previously, slow growth of one 
dominant crack does not occur. 

Most of fiber composite work within the first approach has 
been based on the concept of residual strength degradation. 
This concept also called "wearout" appears to have been 
introduced to composites by Halpin and associates; see, e.g., 
reference [153]. The residual strength <rr(n) is defined as 
static strength after n elapsed cycles. It is obviously a 
monotonically decreasing function of n and is chosen as the 
damage parameter. Fatigue failure is assumed to occur when 
ar(n) becomes equal to the maximum stress amplitude. A 
recent paper by Yang and Jones [154] gives a statistical 
treatment for two-stage cyclic loading in terms of this ap
proach which is in reasonable agreement with some of the test 
data obtained in [155] and also contains a summary of 
previous work. The main difficulties with this interesting 
approach are: (a) it requires a statistical functional 
relationship of ar not only of n but also of previous cyclic 
loading history, and (Jb) in many cases ar degradation until 
failure is insignificant. (This has been sometimes called 
"sudden death.") 

Another possible approach is a general cumulative damage 
theory proposed by Hashin and Rotem [156] which has 
recently been generalized to a statistical theory [157]. In this 
approach damage due to a cyclic loading program is 
characterized by the residual lifetime under subsequent 
constant amplitude cycling. 

In conclusion it should be pointed out that the problems of 
failure criterion and cumulative damage which have been 

discussed separately are in reality inseparable since the state 
of stress in a lamina within a laminate is at least plane and 
therefore cumulative damage theory under combined stress is 
required. 

There is obvious need for systematic experimental work for 
unidirectional composites. Unfortunately, most of ex
perimental investigation has been done for laminates thus 
introducing major additional complexity as will become 
apparent in the next section. 

7.5 Failure of Laminates. In conclusion, the important 
problem of laminate failure under static or cyclic loading will 
be briefly discussed. A fiber composite laminate consists of 
thin, parallel, unidirectionally reinforced layers, often called 
laminae, which are firmly bonded together. The heterogeneity 
is produced by the different fiber orientations of the layers. 
Additional heterogeneity may be introduced when the 
laminate consist of different composites, in which case the 
laminate is called hybrid. It is usually assumed that the 
laminae can be represented as homogeneous anisotropic with 
the effective properties of the unidirectional material. The 
analysis of elastic and other physical properties of laminates 
in terms of lamina properties is well understood and is not 
incorporated in this survey. 

Unfortunately, however, analytical determination of static 
or fatigue failure characteristics of laminates is a very difficult 
problem which cannot be considered resolved at the present 
time. The simplest case is a symmetric laminate (the midplane 
is a geometrical and material plane of symmetry) which is 
loaded by membrane forces in its plane. In this case the 
laminae are in states of plane stress while at the edges, 
however, the state of stress is three dimensional and certain of 
its components may be singular. For such laminates consisting 
of polymer fiber composites, under static or cyclic load, there 
are two major failure processes: (1) The intralaminarprocess: 
intralaminar cracks accumulate in fiber or in matrix modes. 
In the former case the cracks are short, rupturing fibers and 
debonding fiber matrix interfaces and are randomly located. 
In the latter case cracks run parallel to fibers from edge to 
edge. Reifsnider [158] has shown experimentally the oc
currence of periodic matrix-mode crack patterns (named 
Characteristic Damage States) and has given a simple 
analytical method to predict such crack patterns. (2) The 
interlaminar process: the high edge stresses, interlaminar 
shear, and tension open up an interlaminar edge crack which 
may split the laminate. For static load this is a short-time 
phenomenon while for cyclic load the interlaminar crack may 
grow slowly with cycling, not unlike a metal fatigue crack. 
Interaction between these two processes occurs to some ex
tent. Adjacent intralaminar cracks may produce interlaminar 
debonding and interlaminar cracks may branch out to become 
intralaminar. For further discussion of such effects see 
Reifsnider et al. [159]. 

Analytical prediction is concerned with initiation, 
development, and termination of the failure process. The 
most common approach for prediction of initiation of the 
intralaminar process is to obtain the plane stress fields in the 
laminae, away from the edges, by conventional methods of 
linear elastic laminate stress analysis. Laminae nonlinearity 
may also be incorporated, Hahn [160] for nonlinearity in 
shear only, Hashin et al. [161] for nonlinear interaction of 
shear and transverse stress. The failure criteria for 
unidirectional material discussed in the foregoing are then 
examined for all laminae stresses and initial failure is 
characterized by first compliance with a failure criterion. This 
defines the failed lamina and its failure mode. Such an ap
proach has been employed by Rotem and Hashin [162] for 
fatigue failure of angle plies. Not surprisingly, the predicted 
fatigue strength is often less than the experimental result. This 
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and other aspects of fatigue of laminates have also been 
discussed in a survey article by Hahn, reference [163]. 

Analysis of failure in terms of intralaminar crack ac
cumulation by fracture mechanics methods (assuming that it 
is legitimate to consider the cracks as if in homogeneous 
anisotropic laminae) appears to be too difficult an un
dertaking at the present time. Consequently, the approach 
generally adopted is to represent lamina damage ac
cumulation in terms of in situ stiffness reduction. This 
produces redistribution of laminae stresses. New initial failure 
may be predicted until the load-carrying capacity of the 
laminate is exhausted. The most primitive approach is to 
assume that lamina fiber-mode failure implies zero stiffness in 
fiber direction and lamina matrix-mode failure implies zero 
transverse and shear stiffness. Ultimate failure is mostly 
identified with fiber-mode failure of primary load-carrying 
laminae. This approach is sometimes called the Ply Discount 
Method and may also be applied to the case of cyclic load in 
terms of laminae S-N curves and the fatigue failure criteria 
(7.4.4). 

The prediction capability of this procedure evidently 
depends on the accuracy of lamina stiffness-reduction 
evaluation. One approach is to determine in situ stiffness 
reduction analytically in terms of crack patterns. This is an 
important subject in the stage of development. Another 
approach is to determine such stiffness reduction in terms of 
measurement of laminate stiffness reduction via the known 
relations between laminae and laminate stiffnesses; see e.g., 
O'Brien and Reifsnider [164], Rotem [165]. But the crucial 
question regarding both approaches is: to what extent is 
lamina damage accumulation independent of the laminate 
stacking sequence, or at least of the fiber orientation of its 
immediate neighboring laminae? While a definitive answer to 
this question does not seem available at this time it is of in
terest to note that fatigue failure prediction of laminates 
based on the experimental stiffness reduction method, Rotem 
[165], is in good agreement with test data. 

The source of interlaminar failure is a theoretically singular 
state of edge stress, i.e., a very high state of stress of unknown 
magnitude. The prediction of interlaminar crack opening is 
thus a fracture mechanics problem the solution to which 
requires: (1) the mathematical nature of the edge singularity; 
(2) a criterion of crack criticality for static load; and (3) a 
crack growth law for cyclic load. With respect to (1), the first 
edge stress analysis was performed, numerically, by Pipes and 
Pagano [166] and many others have followed. See a recent 
review article by Soni and Pagano [167]. The possibility of 
edge stress singularity had already been surmised in [166] but 
numerical methods cannot uncover it. The analytical nature 
of edge singularities and of boundary layer edge fields has 
been established by Wang and Choi for mechanically loaded 
laminates [168] and for moisture swelling of laminates [169]. 
Problems (2) and (3) must be considered unresolved at the 
present time. Consequently edge delamination studies have 
frequently been based on application of failure criteria to edge 
stresses averaged over a small distance from the edge, 
Herakovich [170, 171]. 

This concludes the brief discussion of laminate failure. A 
recent comprehensive survey has been given by Rosen [172]. 
The present underlying point of view is that laminate failure 
must be understood in terms of failure of laminae. To descend 
to the fiber/matrix scale will result in hopeless difficulties. On 
the other hand, to explore laminate strength in terms of 
laminate coupon testing is an equally hopeless undertaking 
since from this point of view laminates are an infinite set of 
materials. 

Conclusion 

This survey has been written with the aim of presenting 

analysis of mechanical and materials as a discipline within the 
engineering sciences. Several important subjects have not 
been covered. One of these is plasticity of composite materials 
which is of particular importance in the context of metal 
matrix fiber composites. Much work on this subject has been 
done by Dvorak and associates and a brief survey has been 
given in [2]. See also recent analyses by Min [175] and Aboudi 
[176]. A related problem is plasticity of a poly crystalline 
aggregate which has received repeated attention, in particular 
by Budiansky and Wu, Hill, Hutchinson and Lin. The older 
literature has been discussed in [3]. A second important 
subject is dynamic behavior and wave propagation in com
posites. There exists a considerable literature on the subject in 
the contexts of particulate composites and layered media 
which by itself would require a substantial survey effort. 
Recent surveys have been given in [27, 174]. 

The subjects of strength and failure of composite materials 
are of special nature. Engineering design requirements have 
motivated an immense literature much of which is confined to 
unpublished reports. At the same time the problems are of 
such difficulty that an analytical definition and/or solution 
has not been achieved in many cases and therefore much of 
the available work is of semiempirical nature. The many 
important problems that require analytical solution continue 
to be a primary challenge in composite materials research. 
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Forced Oscillations in a Two-Layer 
Fluid of Finite Depth 
An initial value investigation is made of the development of surf ace and internal 
wave motions generated by an oscillatory pressure distribution on the surface of a 
fluid that is composed of two layers of limited depths and of different densities. The 
displacement functions both on the free surface and on the interface are obtained 
with the help of generalized Fourier transformation. The method for the asymptotic 
evolution of the wave integrals is based on Bleistein's method. The behavior of the 
solutions is examined for large values of time and distance. It is found that there are 
two classes of waves—the first corresponds to the usual surface waves with a 
changed amplitude and the second arises entirely due to stratification. Some in
teresting features of the wave system have also been studied. 

1 Introduction 

The waves generated by an oscillatory pressure distribution 
on the surface of a homogeneous fluid has been discussed by 
Miles [1] in case of an infinite depth and by Debnath [2] in a 
finite uniform depth. The problem in a stratifed fluid has 
been studied by Debnath [3] for an oscillatory pressure 
distribution acting on the interface, while Pramanik [4] and 
many others examined the wave pattern due to a moving 
oscillatory surface pressure in a layered fluid. But none of the 
previous authors made studies on the wave train in the case of 
a two-layer fluid of limited depth. The aim of the present 
paper is to show the wave pattern due to an oscillatory 
pressure distribution on the surface of a two-layer fluid of 
finite depth. 

We consider the initial value problem of waves due to an 
oscillatory pressure distribution on the surface of a fluid of 
constant density p, and of finite depth hx which lies over 
another liquid of constant density p2(p2>P\), and of finite 
uniform depth h2. The integral representations of the 
displacements of both the free surface and the interface are 
obtained with the help of generalized Fourier transformation 
method. The integrals are evaluated for large values of time 
and distance by a method due to Bleistein [6]. The ultimate 
wave system both on the free surface and on the interface are 
found to consist of two distinct components. The first 
component corresponds to the ultimate surface wave for the 
homogeneous case with, however, a changed amplitude, and 
the second arises entirely due to stratification. Another in
teresting fact follows from our investigation regarding the 
positions of the resulting wave system. It is found that there 
exits two moving points both on the free surface and on the 
interface such that in the region left to the first point, both the 
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waves exist in the region in between the points only one wave 
exists, and in region to the right there is no wave. 

2 Formulation of the Problem 

We consider the two-dimensional linearized problem of 
wave propagation in an in viscid, incompressible two-fluid 
system as one of constant density pj of uniform depth h j that 
floats over another liquid of density p2(p2 >P\) of finite depth 
h2. It is convenient to assume that the x-z plane be un
disturbed horizontal interface and Y-axis vertically positive 
upward; and the origin of rectangular Cartesian coordinates is 
taken on the interface y = 0. Waves are generated in the 
system by the continuous action of a pressure distribution 
f(x) exp (iwt) which is suddenly applied to the free surface at 
time t = 0. We assume that j ' = h{ + i\i{x,i) and.}' = -q2(x,t) 
are the equations of the free surface and the interface, 
respectively, and g is the acceleration due to gravity. Let <Pi(x, 
y,t) and <p2(x,y,t) be the velocity potentials fQr the upper and 
lower liquids, respectively. Then the linearized equations of 
motion and the boundary conditions are 

Vy>? = 0 ; ( - o o < x < 00, ( ) < ; / < / ! , , r > 0 ) 

dt Pi 

dy dt 

V 2 f t=0; (-h2<y<0) 

Interfacial conditions are 

at y = hx 

d<p2 

^(ir+8rh)=pi(ir+g7h) 

dy ~ dy dt 

- at y = 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Initial conditions are 

<pl(x,y,0) = <p2(x,y,0) = 0 

ViQc,0) = V2(x,0) = 0 

h 1 
2 2 2 
i — ur a2 — w 

; - c o 2 J 
(17) 

(7) 

The boundary conditions at the rigid bottom surface is given 
by 

d<p2 

dy 
= 0; at y=-h2 (8) 

gi(K) = p2(l + tanh\K\hl cothld/!2) 

ft(*) = l*i<«) -40»2 - P I ) * 3 ( K ) t a n n i c , )1 / 2 

g3(x) =p[ tanhUl^i +p 2 cothlKl/!2 

Using the transformed conditions (7) and (8) the constant 
A/m(l=l, 2; m = 1, 2) are to be determined in the following 
form: 

Solution to the Problem 

The applied pressure/We'" ' is assumed to be a generalized 
function in the sense of reference [5]. To solve the preceding 
system of equation (l)-(8) we introduce Fourier trans
formations of the functions in x as follows: 

1 f" 
<P\{K,y,t)= -== <pl(x,y,t)e IKXdx etc. 

V 2 i r J -=° 

2a,Alm(K): 
//(K)sechl«lAi \ H2(a

2
m—oi2) KjsechUIA, TJ 

#1*3 00 L" a 2
2 - C T , 2 

H2[a,+ (-!)>"-loi] 
2 2 

ff2 - f f i 

2TT 

The solutions of the transformed equations (1) and (4) subject 
to the transformed conditions (7) and (8) are 

<Px =A(K,t) cosh\ K\y+B(K,t) sinhl/cl^ (9) 

<p2 = C(K,t) cosh\K\(y + h2) (10) 

where the constants A, B, and C are the functions of x and t. 
Transformed condition (6) together with (9) and (10) gives 

5=Csinhl/cl/ i2 (11) 

Transformed equations of (2) and (3) with the help of (9) gives 

&A. d\B 
tanhkl / i ! + g k l (A t ann lx !^ +B) 

+ 
ioif(ic) sechl/cl^e" 

Pi 
-0 (12) 

+ ( - l ) ' " - / [ p 2 c o t h l d ^ 2 [ < - [ ( - l ) ' " - 1 a , + co]a)] 

where 

• W i = P i ( f f 2 2 - f f i 2 ) 

/ / 2 = co{ (p2-Pi)gl/cl -p2co2cothl/cl/i2) 

JiW =gl«l ( ( P i 2 - P i P 2 + P 2 2 coth2 )Kl/i2)tanhl xl/jj 

+ P[P2 COthl/cl/!2) 

aim = o2\ (/=1) 
aim-oi> C=2) ; g 3 M already defined. 

The surface displacement ij! is now obtained after Fourier 
inversion: 

Transformed equation of (5) and (6) with the help of (10) and 
(11) gives JO a, —03 Jo (J, 

Pi 
d2B 

i\ — 01 

+ g W ( p 1 - p 2 ) f l = /02COthl/elA2-j- (13) + [ " f l ^ l Z £ l > e * ( « - a 1 / ) ^ + f " f i ( Z f l Z f l > c - . - ( a , 
" ' J 0 (J, + 01 Jo (7, + o 

'+«)</£ 

(12) and (13) at once gives 

94-4 p 2 ( l + t a n n i c , coth\K\h2) d2A 

~dF 8 K pi tanhlAcI^! +p2cothlKlA2 3t2 

+ ( g ! d ) 2 ( P 2 - P . ) t a n h k l / / 1 ^ 
p! tanhl/cl/j] +p 2 c o t h l d ^ 

/co/(K)sechlKl/!, ((p, -p2)gl/cl +p2co2cothl/cl/j2)e" 
+ 

P! [p[ tanhlxl/i! +p 2 coth I KI/i2) 

- J : F\(K,OI) 

at — a> 

<*i 

Jo 
eHlt~KX)dk 

F ^ e l ^ d k 
Jo a, + 

CTj — CO 

1 T 01 

F2(K,O2) 

Jo ffl + CO 

JO (T 2 - (o Jo (72 — 0) 

= 0 

(14) 

Solution of (14) is 

2 2 

^ = £ E-4U)e/l(-1)'""la']'+PU)e''M' (15) 

F 2 ( - « , a 2 ) ^ , g , 

ff2-C0 

Jo a2+ 01 Jo cr2+co 

_ r ^^1 e,^)dk_ r ^-^e«^)dk 
Jo a2 — 01 Jo a2 — 01 

F2{K,OI) . f°° ^ ( « . 
JO (7? + 

eHut + KX)dk_ 
F2{-K,Ol) 

a2 + oi <j2 + 01 

/ = 1 m = l 

where the larger and the smaller roots of (14) are 

2g3(«) 

2g3M 

f ' *2<-« 
JO (7, + 

r ( f(K)e'^'+^dk-
r rt. Q J - °° 

ei(ut-«x)dk 

p201 

(16) 

and 

/>(*) = 
/w/(K)sechlKl/ii {p2co2cothlKl/!2+glKl (pi -p2)) 

P , ( f f 2
2 - f f l 2 ) g 3 ( K ) 
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2-7rp,g J—»" ' ' V27rp,g2l/cl 

" / ( « ) cothUI/i2 sinhkl/ti e'^'+^dk 

-<*• (PI -p2)sinhl/cl/!, +p2cothl/cl/!2coshlKl/!1 

where 

F, (K,O) = RI(K,O)NI(K,(J) 

F2(K,c) = R2{K,(j)Ni(K,a) 

(18) 
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R\(ic,a)-
/"(/OsechUI/i! r H2(a2

2 -co 2 ) H1{o1-u2) 3 A s y m p t o t i c Analys i s o f Uns teady State ;hiKl«! r 

1 # | S 3 ( K ) 1- a2
2-a2 a2

2-(Ji2 
2\2it gai 

- (cr-co) p2cothl/cl/i2[co(a+co) ~a2
2] + —l-— 

v. giMJJ 

n / " ( ^ s e c h k l / i , r i / ^ 2 - c o 2 ) H2(<?-u2) 
R2(K,<J) = — — z z -z z— 

l-Jlugo^Hig3(K) L a,2-a1 o2 - °i 

+ (ff-w) |p 2cothlxl / i2[w(ff + w) -ai2}+ ' " I 

N (K,O) = j j cosh I K I h i 

p 2 cothl/cl/!2 sinh2 IKI / I , 

(p, —p2)sinhI /cl/jj + p2cothl/cl / j2 cosh -^h~]a 

+ 
co2ff sinh I K I /t! (p! s inhUI / i ! + p 2 c o t h U I / i 2 cosh I K I /i j) 

gl/cl ( ( p , ~p 2 ) s inh l KI/?J + p 2 coth I KI/J 2 cosh I«!//[) 

Hl,H2, Jl (K) and g3(/c) are already defined. 

Similarly displacement of i)2 can be deduced in the 
following form: 

( P i - p 2 ) i J 2 = i " ^ ^ ^ " I ' + ^ c t t 

JO <J] — 0) 

JO ffj — CO J 0 <7j + CO 

Jo a ! + u Jo <7] — co 
F 3 ( * . " ) , , ( M M . « 

• i ; 

Jo a, + co Jo a-?—co 

1 °° F-,(K L. 
3V ' ' ei{ut+KX)dk 

0 (Ti + CO 

F 3 ( - K , C O ) 

CT2 — CO 

Jo a2 — co Jo a2 + co 

+ r F^-K'-°2)
e-no2t+KX)dkr

 FMe^,+KX)dk 
Jo a2 + co J o CT2 — co 

_ j - f4(-«,a»)gf(Mt_„)/|fr_ f - ^ ) . . . + < 
en«t-«x)dk_ f °° E^±Lei(«t+«x)dk 

o tr2
 — w Jo J 2 + B 

f 4 ( - ^ ) e , ^ ^ ^ C O 2 ^ 

/(K)cothl/cl/!2e' (w '+Mr ,rfA: 

-«• (p , - p 2 ) s i nh lK l / j 1 + p 2 coth I *cl/i2 coshl/cl/i) 

(19) 

where 

W2(K,CT) 

/?
3(K,ff)=JR1(K,ff)7V2(K,a) 

/ r
4(K,a)=i?2(K,a)iV2(/c,(7) 

p 2
2 co th 2 l/cl/i2 sinhl/cl/i! 

(Pi -p 2 ) s inh l / c l / i 1 + p 2 cothi/cl/h cosh -^h}° 
p2a>2acothlK\h2(pl s inhlxIA, + p 2 cothl/cl/j2 coshUIAj) 

gl/cl { (p , - p 2 ) s i nh l ) c l / ! 1 + p 2 cothl KI / I 2 cosh IKIft, ] 

RX(K,O) andi?2(K,a) defined earlier. 

In this section we will study the unsteady wave motion for 
large values of / and Ix l . The dominant contribution to this 
asymptotic analysis comes from the poles and the stationary 
points of the integrals in (18) and (19). Integrals in (18) and 
(19) contain either a pole or a stationary point or none for 
each of the integrals, excepting the second and tenth integrals 
which have both the pole and the stationary point . These 
integrals are to be evaluated by a method due to Bleistein [6], 
so that the result remains valid even when the pole and the 
stationary point coincide. 

Now the expression in (16) for a2 and a2
2 have been 

written in a simpler form by Mahant i [7]. 
Following them we write 

(20) 
cr , 2 =glKl tanhl/cl (h — ha) 

(j2
2=gUi t anh l« l / ! 0 

where h = h1+h2 and 0<ho<hl. 

First we confine our attention to the waves along the positive 
x-axis direction. Let the stat ionary points and the poles for the 
second and the tenth integrals in (18) be denoted by a 0 , a and 
/30 , j8, respectively, which are the solutions to 

a-=x/t 

7=1,2 

where a' denotes the differentiation of a with respect to k. It 
may be pointed out that the stationary points a0 and /30 exists 
only when \lg(h — ha) >x/t and -Jgha>x/t. 

Following Bleistein we first evaluate the second integral in 
(18). For this we make a change of variables of integration by 
the relation. 

( * i -w)t/x- (K-U) = - ( -z2 + axz) (21) 

where «] is a parameter inserted to determine the distance 
between a and a 0 . Here we note that z = 0 corresponds a pole 
k = a. Then the second integral in (18) reduces to 

j ; (J\ — CO dz 

J o L ffj - co dz J 

--ix(z+m) 
dz (22) 

where 

al=(a-a0)[t/X'\ol'(ct0)\)
1/2 

Since z = 0 is a simple pole of the integrand, we may write 

F i ( - K . g i ) dk _Ai 

a{ — co dz 

Now it immediately follows that 

F j ( - a , c o ) 

+ S ^ U + fli)" 

a [(a) 

a, 

F i ( -o t 0 , co ) 

ffi(a0) + w 
[ X/t 1 

For x—oo by Watson ' s lemma the expression in (22) reduces 
to 

1 . 2 
~ — IXZ 

hi dz + 

1 . 2" 
- — IXZ 

, 2 dz 

z-ax 

= — 7r(l +i)A s g n ( a - a „ ) c i s u < : - ^ - )e' (ut-ax) 
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i\(t)t~ax+— xaf ) 

(23) + B0^— 0 - i ) e 

wherecisj>c=c(A:) + is{x) 

\c(x),s(x) = -= \ -j=[cosx,sinx]dx\ 
L V27T J o VX J 

The main contribution of the third and the eleventh integrals 
in (18) to the asymptotic analysis comes from the stationary 
points a0 and /30, respectively. To evaluate such integrals we 
use Kelvin's method [8] of stationary phase. For example, this 
method gives 

[r 
2TT 

#(V^o>y) 

1/2 F4(ft,,-co) 

.Hut-fix) 

a2"Wo)\ ff2(/30) + co 
,i{xP0-o2Wo)t+*M) 

+AS-J ̂  ( l - / ) / / (V^>y)e 
i(ut-0x+-xa2

2) 
(25) 

f» F I ( K , -

Jo a, + < 
-e"-KX-''i')dk 

,r 27r 1 
LHff , " (a n ) l J 

f i ( a 0 , - a i ) ( g/UaQ-o^aQV + jr/4) 

To estimate the polar contribution of the other integrals in 
(18) we take the help of Lighthill's [5] method. For example, 
for large x this method gives 

j ; 
FdK'ai) / „ J ( .Fi(aiw) k e,KXdk»7r; —. , , e'c 

CT] — O) 0 ' l ( « ) 

Collecting all the results so obtained we finally derive the 
following uniformly valied asymptotic estimate for 17,: 

Vi = T ^ • - ( l + ; ) s g n ( a - o ! o ) c i s ^ - y - j j 

,/{u/-cur) 

a,'(a) 

/ /(Vg(A-A0)>y)e' 

+ [ 2 T ] '/2 ^ ( ao . -w)^ 
Ulff,"(a0)lJ ff!(a0) + w 

where Z)0 and Z)Q denote the similar expression as B0 and BQ-
Thus we get an asymptotic estimate of the surface waves 

and the waves at the interface which are valied for all values 
of the parameters of the problem. 

The wave motion represented in (24) and (25) consists of a 
system of decaying dispersive waves superposed on a non-
decaying traveling wave represented by the first and the 
fourth terms both in (24) and (25) on the right-hand side of 
these equations. The traveling waves have a slowly varying 
amplitude and move with velocities co/a and «//3, respec
tively. 

4 Steady State 

In this portion we will consider the important limiting case 
t> > 1. For large time and distance the transient part in (24) 
and (25) dies out and the motion reduces to a steady state 
wave motion. To derive this steady state wave motion we note 
that for large argument 

. /xai
2\ 1 , „ 

Ua0-ff1(a0) / + T/4) 

Then the steady state wave is given by 

. F , ( - a , w ) 

1 i\ 
uf-ax+ — xa^J 

i)\ = 2iri 

+ 2 « 

CT,'(a) 

^(-fl .ctf) 

pi(tjjt — ax) 

,i(ut~Px) 

+ TT-
F2(-ftco) r. 

ff2(0) 
[ / - ( l + / ) s g n ( / 3 - | 8 0 ) d s ( x ^ - ) ] 

= 0 

for a0 > a 

(26) 

,Hol-Px) 

and 
2TT ] " 2 F2(0o,-a) , 

• 1 — ^ — 1 cr2(/3o) + w 

+ B^^ ( l-/)//(V^>y) 

(AT|30-ff2(|80)( + ir/4) 

i\ut-0x+-xa2
2) 

(P\ - P 2 ) I ? 2 = 2 T T ( 
-F3(-«.<") . (ut — ax) 

(24) 

where a2 is determined the distance between fi0 and ft BQ 
denotes the similar quantity as B0 and H is the HEAVISIDE 
step function. Similarly we get the expression for j / 2 : 

(P\-Pi)r)2 = v 3
g , ( " ' " [ / - ( l + / ) s g n ( a - o : 0 ) c i s ^ - y - j j 

a [{a) 

^ ( - & " ) „ , , , 

= V2+Vl' 

= 0 

/30<a 

ft></3 

for a0 > a 

Po>P 

(30<a 

Po<P 

(27) 

(./'(uZ-our) 

a,'(a) 

//(Vg(/!-/*0)>y) 

" 2 F 3 (a 0 , -co) ,. e' 

In the same way we can deduce the expressions of the waves 
propagating along the negative x-axis direction as follows: 

•q! = 2 i r / 

[ 2TT 1 1/2 F , (a 0 , -c i , , ., , .,, ... 

/lff,"(a0)lJ (Ti(a0) + ij) 

•fi(a,w) 

ff((a) 
p/(a)/ + aj:) 

+ DnJ — H-i)H(y/g(h-h0)> — ) 

1 2 ^ a*+-*«l J 

+ TT-

^(P) •[• ; - ( l+/)sgn(/3-(3 0)cis (4)] 

for a0 > a 

iS0>/3 

/30<a 

(30<(3 

and 
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(Pi - P 2 ) l ? 2 = 2 7 r ' 7 
Fi(a,u) 

,l(w/ + av) 

o{(et) 
for a0>a 

Po>P 

= 0 
B 0 <a 

3O<0 

Expressions (26) and (27) reveals that both 77! and TJ2 consists 
of two distinct components of progressive waves. The first 
component corresponds to the usual surface waves with a 
changed amplitude and the second component arises entirely 
due to stratification. 

Now we turn our attention to find the physical meaning of 
the condition that existence of the system of waves depends on 
the relative magnitudes of a0 , )30, a, and /3. The precise 
condition for this occurrence of a = a0 and (3 = (30 are 

7=1,2 (28) 

for substituting idi0 = X and introducing two dimensionless 
parameters 

brffio x 1 
u = 

Conditions (28) can be written for j = 1 in the following 
form: 

„ = [ x t a n h x ( - - l ) } 

tanhxf — -l) + (p--l)\ sech2x( A - l ) 
- l ° ° ° 

[ x t a n h x ( A _ 1 ) ] 1 / 2 

0 < X < o o 

andfory' = 2 

u=(XtanhX)1 / 2 

1 tanhX + Xsech2X 

2 {XtanhX)172 

0 < X < o o 

Since ax
 2 > CT2

2 it immediately follows from (20) that 

h 
> 2 

(29) 

(30) 

(31) 

Equations (29) and (30) under condition (31) are the 
parametric equations of the two curves /, II in the («, v) plane 
as shown in Fig. 1. It is easy to see that for points (i>, v) below 
curve I,a < a0, and for points (u, v) below curve II, (3 < {5a. 
We also note that the curves intersect at a point for certain 
values of the parameter, u, say u = u0. Now let us fix o>,hQ, t 
and increase x from zero, then for u < u0 we meet first the 
curve 77 and then the curve I and the reverse takes place for u 
> u0. Physically this means that on the water surface there 
are two moving points X\ and x2 say, so that the whole region 
is divided into three subregions in each of which the wave 
pattern is different. 

The following statements regarding the existence of the 
steady state waves (rils) in different regions can be verified: 

Case I: u<u0 

for x2<x; •nls = ril'+tii" 

Fig. 1 The curves <»• = « 0 and/3 = 0o{h/ho = 3) 

Case II: 

for 

X2 <X<Xil 

x{ <x; 7)U 

u = u0 

X\ =X2 

nu = ni 

= 0 

x<Xi\ Vu = Vi'+V\" 

x>x{; vls=0 

Case / / / : u > u0 

for Xi<x; T h ^ V + r j ! " 

xl<x<x2; r,ls = ri{ 

x2<x; y,s = 0 

Our conclusions are based on the particular value of the 
parameter h/h0. However, it is easy to see for other values of 
h/h0 the qualitative nature of the solution will not change. 

Thus our method of investigation gives important in
formation regarding the position of the waves with respect to 
the source and the two moving lines. It is interesting to note 
that the two moving points change their relative positions for 
different values of the parameter u. Similar situation arises at 
the surface of separation of the two liquids. 
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Rotating Compressible Flow Over 
an Infinite Disk 
The laminar boundary layer in rotating compressible flow over an infinite rotating 
disk is considered for various ratios of disk-to-infinity rotation rates and tem
peratures. It is shown that a similarity solution exists for Td/T„ < (Ud/Q„)2 and 
linearized solutions near this limit are presented. Numerical solutions for flow and 
temperature are given for representative values of the parameters, near and far 
from the limit. 

Introduction 

In this paper we consider the laminar boundary layer of a 
rotating compressible flow over a rotating infinite disk, 
driven either by a difference in rotation rates, or a difference 
in temperatures, or by both. 

In the analysis of rotating flow, similarity solutions for 
infinite disks with simple boundary conditions serve as a basis 
for the qualitative understanding of the flow, or as a reference 
for seminumerical work for complex geometry or boundary 
conditions. The incompressible rotating flow without heat 
transfer, with various ratios of rotation between disk and 
fluid Od/G„, is well known, both for the linear (Ekman layer) 
and the nonlinear case (e.g., [1]). Heat transfer in in
compressible flow over a rotating disk was first studied for a 
stationary fluid (e.g., [2]), and has been reexamined by many 
authors, most recently by Vira and Fan [3], who extended the 
solution to a range of O /̂Q,,, from 0 to 1. Compressible flow 
over a rotating disk with a temperature difference between 
disk and fluid was treated by Riley for a stationary fluid 
(fi„/G</ = 0)[4] and for rigid body rotation (firf/fi„ = 1)[5]. 
Recently, some authors have examined compressible flow in 
an enclosed geometry, driven by small differences of velocity 
or temperature at the boundaries (e.g., [6, 7]). These studies, 
which considered very high angular velocities and emphasized 
the complex interaction of different regions in a closed 
geometry, were limited to small (linear) perturbations about 
an isothermal rigid body rotation. Here we consider the 
simple geometry of an infinite disk and only a moderate 
angular velocity, but allow the ratio of angular velocities of 
disk and fluid (both in the same sense) and the ratio of their 
temperatures to be arbitrary, i.e., not necessarily close to 
unity. We limit ourselves to cases in which a thermal boun
dary layer exists, i.e., when the axial velocity is directed 
toward the disk, maintaining a balance between convection 
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and diffusion. The direction of the axial velocity is deter
mined by the combined effect of the difference in angular 
velocities and temperature: when the disk rotates faster than 
the fluid it causes a radial outflow near the disk and an axial 
inflow toward it. Conversely, if the disk rotates slower than 
the fluid there is a radial inflow near the disk and an axial 
flow away from it. Similarly, cooling the disk causes the fluid 
near it to be more dense and thus drives the fluid radially 
outward with an axial inflow, similar to a fast disk, and, 
conversely, heating causes radial inflow and axial outflow, 
similar to a slow disk. Thus the four combinations of 
boundary conditions are: (a) disk faster and colder than fluid, 
(b) disk faster and warmer, (c) disk slower and colder, and 
(d) disk slower and warmer. In case (a) both mechanisms act 
in the same sense, resulting in an axial inflow. In cases (b) 
and (c) the mechanisms are opposed, so that a boundary 
layer will exist only for disk temperatures below a limiting 
value determined by the rotation ratio. In fact, one result of 
the present work is to find this limiting temperature. In case 
(d) both mechanisms act in the same sense resulting in an 
axial outflow and no thermal boundary layer exists. This case 
will not be treated here. 

In the following we will formulate the coupled problem of 
flow and heat transfer in the boundary layer. We will show 
that the limit of existence of a similarity solution is 
(TVT'oJiimit =(firf/fioo)2, and will present analytical linearized 
solutions near this (nonlinear) limit, and numerical solutions 
away from it. The fully linear compressible and in
compressible solutions will be obtained as special cases. The 
analogous problem of flow near the edge of a finite disk was 
treated in our previous paper [8]. The main result of the 
present paper is an extension of the similarity solutions for a 
rotating disk in compressible flow [4, 5] to rotation and 
temperature ratios that are not close to unity. 

Analysis 

Consider a perfect gas rotating with constant angular 
velocity 0^ over an infinite disk rotating with angular velocity 
Ud about an axis normal to its plane, z = 0. The temperature 
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z = 0: u = w = 0 v = Qdr T=Td 

(7) 

Fig. 1 Limit of existence of boundary layer. A to E are parameter 
values used in numerical computations (Figs. 3(a-d)). 

/ ^ * " - F 

J 

ttO LO tO SO 4.0 5.0 M> 7.0 V 

Fig. 2 Outer layer solution fld = 2 ;fid=0.5 

of the fluid at infinity is T„ and that of the disk Td. The 
dimensional boundary layer equations in a stationary frame 
of reference are: 

— (pru)+ — (prw) = 0 
or oz 

/ du du v2\ dp d / du \ 

\ dr dz r ' dr dz V dz > 

/ dv dv uv\ d / dv \ 

\ dr dz r ' dz V dz ' 

dz 

/ dT dT \ d / 8T \ 

p = PRT 

The boundary conditions are 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

All variables have their usual meaning. Our attention 
is limited to values of r such that ^\x„/(fi\(f)Sl^) 
<r<*JcpTa>/Q0o, i.e., the local Ekman number 
l**,/pi(.r)ttmr2) is sufficiently small so that the flow is con
fined to a boundary layer, and the local Mach number 
O^r/ScpTa, is sufficiently small so that dissipation and 
pressure work may be neglected. Here p\ (r) is the density 
outside the boundary layer. We introduce a new variable 
Z=\\dzp(r,z)i'p\{f) and a stream function \p such that 
ru = d\j//dZ and prw/p{ = d\j//dr + (d\l//dZ)(dZ/dr) and assume 
H<xT. Then, with the pressure gradient in the boundary layer 
imposed by its free-stream value dp/dr = p{ {r)rQ2

x , we obtain 

1 d\fr 
r dZ 

1 d^ 

r dZ 

1 

r 

d / 1 d^ \ 1 di{, d / 1 dV \ 

dr \ r dZ ) r dr dZ\ r dZ ) 

v2
 T . d2 / i a^ 

~ r =-Tai
rQ°°+VldZ2\r dZ 

dv 1 d\p dv 

dr r dr dZ 

1 dxfr d2v 
+ r2 dZV = "> dZ2 

d\j/ dT 1 d^ dT K, d2T 

dZ dr r dr dZ Pr dZ2 

(8) 

(9) 

(10) 

These equations are similar to those for incompressible flow, 
except for the Tterm in (8), and the fact that c, (/•) = \iai/p\ (r) 
is a function of radius. The equations are identical to those of 
Riley, but for the boundary conditions (reference [4] con
sidered 0 0 0 =0 and reference [5] considered Q^ = fid). 
Following [5] we introduce a similarity assumption 

1? = Vnoo/(2v1) Z, xPr=r2Qa^2Vl/Q„F(r,) 

y = /-Q„[l+G(7,)], T= ^[1+0(7,)] 

The resulting equations are 

F'2-IFF" - G2 - 2G = - 0 + V%Fm 

2F'G-2FC +2F' = ViG" 

1 .. 
-2F6' = 

2Pr 

(11) 

(12) 

(13) 

(14) 

(15) 

with the boundary conditions 

,, = 0: F=F'=0 G = Gd 6 = 6d 

(orfi=Qd T=Td) (16) 

r ^oo : F ' - O G-0 0 - 0 

( o r f i - 1 T-l) 

(From here on we will use either G and 0 or Q = 1 + G, 
T= 1+0, where Q and Tnow denote dimensionless variables.) 
These equations will be solved numerically for various values 
QfGd,ed. 

Limit of Existence of Solution. As pointed out in the 
foregoing, a boundary layer always exists when Gd >0 , 6d<0, 
does not exist when Gd<0, dd>0, and otherwise exists only 
when 0rf<0limit (Fig. 1). We will now show that 
0\imn = G2

d + 2Gd (i .e., T]imit = Q2
d). For that we assume 

Gd =0(1) arbitrary (i.e., fld - 1 is not assumed small) and 

dd = G2+2Gd-e (Td = U2
d-e) (17) 
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where e < < 1 is positive. Following Riley [5] we assume a two-
layer solution. In the inner layer 77 = 0(1) we assume 

F=eF(v), G = Gd-eG(V), 6 = 2Gd + G2
d-e6M (18) 

with the boundary conditions 

F(0) = F'(0) = 0 G(0) = 0 0(0) =1 (19) 

where the remaining boundary conditions will be satisfied by 
matching with the outer layer. Substituting (18) into (13)—(15) 
and linearizing with respect to e, we obtain 

2QdG=6 + - F " , -2QdF'= — G", 6" = 0 (20) 

The solution is 

1 
F= 11 - e ~ md« (cos V2firf 17 + sinV2firf rj)}, 

G-
20, 

(l-e-V2Brf"cosV2J^ij), 0=1 

In the outer layer we rescale 

1 = V2ny2 

e 

4V2Qy2 

G=G 6=6 (o r f i= l + G, f=l+6) 

to obtain the equations 

Q2 = f, OF' -Ml' = Q", 

-FT'=yrT" C=d/dft 

v = 0: F = l Q=firf :f i j 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

The nonlinear coupled system of equations (25) and (26) with 
the two parameters Qd, Pr must be solved numerically. In the 
special case Pr= 1 the temperature can be eliminated to yield 

OF' -Ml' = Mfl", Q'2 + fl2F'=0 (27) 

This has been solved numerically for representative values of 
fld both larger and smaller than unity (Fig. 2) (The solution 
for Pr^ 1 is not presented here, for conciseness). 

Thus, a two-layer solution to the problem defined in 
equation (17) with arbitrary Gd (i.e., Qd) and e< < 1 has been 
found, provided that e>0. It can be seen that as e~0, the 
outer layer expands to infinity, i.e., the boundary layer 
solution ceases to exist. This proves that solutions exist for 
6d<6limh = G2

d + 2Gd(Td<T]imk = Qd). It is interesting to 
compare this with the analogous condition for the existence of 
the asymptotic similarity solution for the thermal boundary 
layer in compressible flow over the edge of a finite disk [8]. 
For the disk edge problem the condition is (in the present 
notation) 6d>6limil=Gd + 2Gd.

] Clearly, the edge boundary 
layer solution exists when the disk is warmer than the 
equilibrium value, whereas at the center ("infinite disk") the 
solution exists when the disk is colder. In both cases these are 
the conditions for axial flow to ward the disk.2 

In further analysis of reference [8], it has been found that the existence 
condition stated on p. 253, first column, last paragraph, is necessary, but not 
sufficient. The condition should read 0<vweq <2, which is in the present 
notation 8d>Gd + 2Gd. The upper limit for vweq results from discarding 
solutions in which the equivalent incompressible boundary layer is detached. 

A numerical computation of a series expansion of the edge problem in 
powers of the distance from the edge, shows that the compressible boundary 
layer exists down to about 0.7 of the disk radius. 

The following two special cases reduce to those discussed by 
others: 

Fully Linear Case (Compressible). Consider G d < < l , 
dd< < 1 , i.e., small perturbation (velocity and temperature) 
about isothermal solid body rotation. The limit of existence of 
a boundary layer solution is now 0d<0 l imit =2Gd. The inner 
solution is now obtained by substituting ild = 1 and e = Gd-
Vi8d in (18) and (21), to yield 

(pd- — O l l - e - ^ H c o s V I 7) + sinV2 r,)} F= 
2V2 

G = ( G „ - y e d ) e - ^ ' c o s V 2 v+\ed, 6 = (28) 

The outer solution, defined by the linearized form 
equations (25) and (26), can now be written in closed form 

1 / 1 

of 

F= 
2V2 

1 

~2 

. , ) 

e-Pr(Gd-'/26d)Jlr, Q = 1Q (29) 

The inner layer is a superposition of an Ekman layer driven by 
a velocity perturbation in isothermal flow and a Riley layer 
driven by a temperature perturbation in solid body rotation. 
Note that the inner layer adjusts the azimuthal velocity to a 
value determined by the temperature. The outer layer, which 
exists only in the case of temperature driving, depends on the 
axial flow due to the combined effect of both driving terms. 
This fully linear problem is equivalent to that discussed by 
Brouwers [6] for the case of low angular velocity, without 
dissipation or pressure work (our G— V16 is equivalent to x in 
[6]). 

Incompressible Flow. The incompressible flow is ob
tained from the governing equations with the changes 
p = const., /i = const., Z = z, and with the dimensionless 
temperature redefined as 8(rj) = (T- T„)/(Td - T„). The flow 
problem F, G is then the well-known solution of Rogers and 
Lance [1], which, recomputed, can be substituted in the 
energy equation to obtain 6 or 0'(O). Unlike the compressible 
case in which the Prandtl number of gases is of order unity, 
the incompressible case may also be applied to liquids with a 
much wider range of Prandtl number, or to the analogous 
mass transfer problem, with the Prandtl number replaced by 
the Schmidt number. Three limiting cases can be solved ex
plicitly: 

(a) Pr<<l 

0(rj) = exp(-4/^(00) , , ) , 6'(0)=-4PrF(<x) (30) 

(b) Pr>>\ 

0(1?)=l-j° ,exp(-?3M/r(y), 

6' (0) = - a/T ( •— \ a= [2PrF" (0)/3],/j (31) 

These expressions are of the same form as in [2], except for 
the values of -F(oo), F"(0), which here are functions of 0d . 
Essentially similar results were obtained by [3]. 

(c) Q d = l - e . The flow is an Ekman layer F(r/) = 
e / ^ V I t l - e - ^ H c o s V I 7? + sinV2 rj)}, yielding for Pr = 0(1) 

flfo) = 1 - j j exp( -APr j o F(0d{) dy 

L" e x p(-4MoFH^ 
Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/513 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



I S I 

Fig. 3(a) Axial velocity 

Fig. 3(c) Azimuthal velocity 

l 2 

Fig. 3(b) Radial velocity 

r (0)= - l / j"exp(-4Pr |o-F(fl tfr)d££ -<2Pre. (32) 

Numerical Results and Discussion 

The nonlinear set of equations (13)—(16) was solved 
numerically for five representative values of the velocity and 
temperature ratios, shown as points A ,B,C,D, and is in Fig. 1. 
Note that A,B, and D are close to the limit of existence of the 
boundary layer solution and should approach the linearized 
limit discussed in equations (17)-(27). At A both Gd and 8d 
are small (equations (28) and (29)), whereas at B, D, Gd and 
6d are finite, only their difference being small. 

Figures 3(a-d) show F(T\), F'(r\), G{T\), and 0(r;) for the five 

Fig. 3(d) Temperature 

Fig. 3 Numerical solution, A to E as in Fig. 1. 

cases for Pr = 1. As expected, in Figs. 3(a) and 3(b) (axial and 
radial velocities) the results for A, B and D are close, and the 
values for C and E are significantly larger, in agreement with 
the fact that these points are much farther away from the limit 
curve. The difference from D to E is similar to that from B to 
C (or from A to C is similar to that from BtoE). 

Figures 3(c) and 3(d) (azimuthal velocity and temperature) 
again show the expected trends between the different points, 
though here the maximum values of the variables, at the disk 
surface are prescribed by the boundary conditions. Note that 
the thickness of the boundary layers of G and 6 increases as 
the parameters approach the limit curve, e.g., compare E and 
D or C and B in Fig. 3(c), or E and B or C and A in Fig. 3(d). 

Figures A(a~c) show numerically computed values of F"(0), 
G'(0), and d'(0), i.e., shear stress and temperature gradient at 
the disk surface, as functions of Td,Ud. Also shown are the 
curves obtained from the limiting solutions for small e = Qd -
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F"(0) 

I 2 3 

Fig. 4(a) Radial velocity gradient 

4 Td 

-G'(O) 

I 2 3 

Fig. 4(b) Azimuthal velocity gradient 

Fig. 4(c) Temperature gradient 

Fig. 4 Gradients at the wail.. 
analysis. 

. Numerical results • • asymptotic 

Td. It may be seen that the numerical results of the fully F"(0), G'(0), 0'(O) vanish at the predicted points, and the 
nonlinear problem approach the predicted limits as the slopes of the curves near the vanishing points coincide with 
parameter values approach the limit curve, viz., the values of the slopes predicted from the linearized theory (17)-(27): 
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d2F(rj) 

G'(0)~-e 

dri 

dG(v) 

o V2fid 

drj dG 

drf 0 dr] d-n 

6- + ^r^G'(0) 
V2nrf V2ny: 

9 W ~ f l f \ = f e G ' ( 0 ) 

where G'(0) = Q'(O) is the value obtained from the numerical 
solution to equation (27). Note that for F"(Q) and G'(0) the 
linearized values hold over a fairly wide range. In Fig. 4(c) for 
0'(O), the curves pass through (1,0) since in the absence of 
dissipation and pressure work, the flow is isothermal for 
r d = i . 

All the preceding results were obtained for Pr = 1. To check 
the influence of the Prandtl number, two numerical runs: 
Hrf = 3, Trf = 1.5, and fid = 0.65, Td = 0.25 were repeated for 
Pr = 0.7 and Pr = 1 (not shown here). The effect of the Prandtl 
number is, in this range, quite small. 
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The Effect of Viscosity on the 
Forced Vibrations of a Fluid-Filled 
Elastic Shell 
The effect of viscosity on the axisymmetric, forced vibrations of a fluid-filled, 
elastic, spherical shell is studied analytically. Necessary theory, using boundary 
layer approximation for the fluid as developed in a previous paper for free 
vibrations, has been extended to incorporate an external forcing excitation. Shell 
response, fluid loading, and energy dissipation rate are computed for radial, 
tangential, and combined force excitations. The essential feature of the modal and 
the total responses is determined by resonant frequencies and various vibration-
absorbing frequencies. Frequency spectra for such frequencies, as well as various 
response curves, are presented in dimensionless forms to illustrate the charac
teristics of the solution. 

1 Introduction 

Based on the classical bending theory for shell motion and 
with a boundary layer approximation employed for the fluid 
medium, the governing equations for the free, axisymmetric 
vibrations of an elastic spherical shell containing a com
pressible viscous fluid have been previously derived [1]. To 
examine the effect of viscosity on the axisymmetric forced 
vibrations of a fluid-filled elastic shell in vacuo, the present 
paper incorporates an additional term corresponding to the 
externa] forcing excitation. In the following sections, ex
pressions are given for the normal and tangential shell 
displacements, the pressure and shear stress on the shell 
surface, and the energy dissipation rate associated with shell 
vibration of a general harmonic excitation. From these, 
resonant frequencies and various vibration-absorbing 
frequencies are defined for radial, tangential, and combined 
form excitations, respectively. Computed frequency spectra 
for these frequencies, as well as various response curves are 
presented including the limiting cases of the inviscid fluid and 
the thin shell. Characteristics of these frequencies and 
response curves are established. It is also found that while the 
energy is usually dissipated through viscous action, there exist 
nondissipating modes in which little energy dissipation occurs 
according to the boundary layer theory. The existence of these 
nondissipating modes in the vibration of fluid-filled spherical 
shells may have some implications in the study of head and 
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eye injuries, in fluid dampers for space applications, in 
spherical acoustic resonators for absorption studies, and in 
some topics of earth dynamics. 

2 Dynamic Responses 

Based on classical bending theory of spherical shells, the 
mode shapes of the kth modes for axisymmetric, torsionless 
vibration of the shell may be expressed by the Legendre 
polynomial Pk (cos 6) and its derivatives {d/dQ)Pk (cos &). 
Assuming the Reynolds number for the motion in question is 
very large, the analysis of the forced vibrations of an elastic 
spherical shell containing a compressible viscous fluid, carried 
out in light of boundary layer theory, yields the following 
response expressions [2]: 

W 
T = X I WkPk(x)eli 

= Ep*Pk(x)em 

V 

h ' 
£) vk

dPk(x)e*'; 
H k de 

(1,2) 

PsCs 

h,(^YiPkPk(x)e^ (3) 
K \ C. / t = n 

Pscs 

La k de 

p h (j_\ 1/2 / Q f l y 
ps R\ Rcs. 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/517 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Pscs
3R2

 k=l 

with 

Ik + 1 P' 
/ a = — 5 - j _, F ^ ( x ) t f x , and / , , 

In these expressions, W and K are the radial and tangential 
displacement of the shell, respectively; ps and TS are the 
pressure and the shear stress on the shell surface, respectively, 
and e is the time-averaged energy dissipation rate associated 
with shell vibration. Further, h and R are the thickness and 
radius of the shell, respectively, cs = (E/ps)' /2, E is the 
Young's modulus of the shell material, ps is the density of the 
shell material, 0 is the frequency of vibration, p and v are the 
density and kinematic viscosity of the fluid, respectively, / is 
the time, /' = ( - l)Yl, 6 is the meridional angle, x = cos 8, and 
Pk(x) is the Legendre polynomial of degree k. Wk, Vk, Pk, 
and Tk are the corresponding response functions of the kth 
mode for the normal and tangential shell displacements and 
for the pressure and shear stress on the shell surface, 
respectively. Here, Tk characterizes the behavior of the energy 
dissipation rate. These response functions are defined as 
follows for k > 1: 

*<--'M(fr-(^)"w?n 
-„t(*+1)[-c,(M),

 + (^)!
Aly]), ,6, 

, ,_ 4 . W _ c , ( M)- + A l (M)' , ] 

Mm 
_Al*<*+l)(^)'•/*]], (7) 

+*n^Y <%y <™r «+*>» 
.Ckk(k+l)(^f-)2 j]} (8) 

2k+l 

/QR\2 {QR\2 

\ cs / 

QR\2 

{—) (l+mk)yJ 

+ < 
and 

**-"- woxwwfn 
2 'u,rR\2-

Mc.(^)'«[(")-(^)]] 
+ve[-k(k+\)[-ck(^y +A,(^) /] 

[/oiLR\2 /QR\2 / f i # \ 2
 x , 

-Ckk *+»(¥)'•' ']]}• 
Here 

/,,-
Psc, (i): * \ 2 /< # \ 2 

o*c2 \h ' 

(9) 

(10) 

+ 1) J Me™** 2k(k+\)x ~' ' " "" ' ( U ) 

and Fr and F e are the amplitude of the applied radial load 
Fre'a and the amplitude of the applied tangential load Fee'Bl, 
respectively. Also, Ck and C'k are constants defined in 
reference [1], mk is the ratio of the generalized masses 
associated with two mode shapes as defined in reference [1], 
and co'k and 00k are the in vacuo natural frequencies. In terms 
of mk, wk and cok, the following notations are defined; 

-•(mkuk
2 + u'2k)/(l + mk), oik

2--

cok 
2={o>'k

2-ak
2)/(\+mk), 

and 

In addition, 

A, 

« V =(mkiM'k
2 +coA.2)/(l +mk), 

= ( 1 - 0 
V2 R 

2" h - ( — ) n 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(2k+\) h Mk ps~
 ( 1 8 ) 

Here c is the speed of sound in the fluid, Mk is defined in 
reference [1], the jk(QR/c) are spherical Bessel functions of 
the first kind, andy'^ (z) = djk (z) Idz. 

The A in equations (6)-(9) is a function of forcing 
frequency 0 with 

^^y-mmy-m\ 

°-<'-'>T«"'>(£)"(f) 

and 

R 1 
7 = 

+T(^)V + D[( 
QR\-

+ A ,a2ra „ 2 r / O R \ 2 

\ c, / LV c0 / ] 
+ Alk(k+1)(—') 

o>kR^2 

MT)W( 
-(^)2]y2]+A'^)4(1+^) / (19) 

The frequency equation for the free vibration problem can be 
obtained by setting A = 0. 

For the breathing mode, k = 0, the relevant response 
functions are 

2Vrr/wiR\2 /OR w\2 

h M0' ps \ cs / J 

in which M'0 is also defined in reference [1]. The effect of fluid 
viscosity disappears, as would be expected for the vibration of 
zeroth mode. 

3 Responses to Radial Loading 

3.1 Critical Frequencies. Following (6)-(9), the critical 
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Table 1 Response characteristics k > 1 

Response function Forcing frequencies 
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Q = aik or 7 = 0 
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none 

roots of (20) 

7 = 0; 
0(A,) if fl-o^ and 7 ~ 0(1) 

none 
roots of (22) 

7 = 0 

none 
0(A!) if (22) is satisfied 

roots of (23) 
7 = 0 

root of (25) 

roots of (26) 

7 = 0 or root of (25) 

0(A,) if (25) is satisfied 

0 (A , ) i f (26) is satisfied 

roots of (27) 

7 = 0 ;0 (A , ) if (25) is satisfied 

frequencies, at which the peak response or vibration-
absorbing phenomena [3] is expected to occur, are defined in 
Table 1. In Table 1, flnat is defined as the root of A = 0, with 
A defined in (19) and flrigid is a root of / - ' = 0 corresponds to 
Rayleigh's rigid shell mode [4]. Critical frequencies are 
computed in the following and presented in form of frequency 
spectrum. All spectra plotted in this paper are discrete, i.e., 
only those points corresponding to integral values of the mode 
number k are physically meaningful. Figure 1 plots the in 
vacuo natural frequencies uk and u>'k, together with 
frequencies iok, uk, and lo'k defined in (12)-(14). This figure 
demonstrates the well-known feature of the in vacuo natural 
frequency. The membrane mode w'k is almost independent of 
h/R; in the bending modes, uk is sensitive to changes in h/R 
for large k due to the bending effect. Figure 1 reveals that cô  
and wk are close to u>k and therefore are also insensitive to 
change in h/R. d'k, however is /j/i?-dependent and becomes a 
constant function of k for very thin shells. 

For the fluid-filled shells, the peak response is generally 
expected as the forcing frequency fl approaches the natural 
frequency flnal To illustrate the characteristics of the solution, 
computations were carried out with cs = 4968 m/s, c = 1326 
m/s, ps = 7852 kg/m3 , p = 897 kg/m3 , v = 1.672 X 10 

Ckiok
2 + (Q2-wk

2)J=0. (20) 

The roots of 7 1 = 0 corresponds to Rayleigh's rigid shell 
mode (i.e., fl = r̂igid)» whereas the roots of J = 0 correspond 
to the modes with vanishing fluid pressure on shell surface. 
The roots of (20) are the nondissipating modes under radial 
loading. From Fig. 2, the natural frequencies follow very 
closely either those of a fluid-filled rigid shell or the in vacuo 
natural frequencies. 

The roots of A = 0, / = 0, 7 ' = 0 , and (20) are also 
studied, for a petroleum-filled steel shell with h/R = 0.0003. 
In this case the natural frequencies follow very closely either 
oik, 0 or the roots of J = 0. For thin shell limit, y in (18) 
approaches oo, and for A defined in (19) to become zero, 
either J, fl, or ( f i - cô ) must vanish. The spectra of / = 0, J~l 

= 0 are independent of h/R. 
The nondissipating modes, shown as broken lines in Fig. 2 

are insensitive to changes in h/R. Because all parameters 
involved in (20) are insensitive to changes in h/R, the roots are 
also unaffected. 

The peak response usually occurs as fl — Anat.> b u t the 
occurrence of the vibration-absorbing phenomena may 
depend on the type of response and form of forcing. Under 
radial loading, the modal responses of the normal shell 

mVs, R = 0.3048 m and the Poisson's ratio of 0.3 d i s p l a c e m e n t ^ t a n g e n t i a l shell displacement Vk, shear 
corresponding to a petroleum (crude oil) - filled steel shell 
Therefore, the dimensionless input parameters are c/cs = 
0.267, p/Ps = 0.114, and (v/Rcs)

Vl = 1.05 x 10-3 . Selection 
of petroleum (crude oil) and a small size shell is intended to 
emphasize the effect of viscosity. Since the effect of viscosity 
appears through (v/Rcs)

Vl, the viscous effect becomes less 
pronounced as R increases or v decreases. Figure 2 plots the 
spectrum of the circular component of flnat corresponding to 
a petroleum-filled steel shell with h/R = 6.03. Also plotted 
are the roots of J~' = 0 and 7 = 0 , with 7 defined according 
to (17), and the roots of 

stress fk on the shell surface, and the energy dissipation rate 
associated with shell vibration ek vanish as Q — flrigid (i.e., 
7 - ' = 0). If fl - flrigid and Qrigid = uk, then Vk ~ 0(1). As fl 
— 03k (Fig. 1), the normal shell displacement Wk and the 
pressure on the shell surface pk vanish for inviscid fluids and 
are vanishingly small for fluids with small viscosity. 

3.2 Response Curves. The response to radial loading are 
computed for a concentrated force: 
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MODE NUMBER k 

Fig. 1 Natural frequencies of a steel shell in vacuo with h/R = 0.03 or 
0.0003 ( for w|(R/cs and wLfi/cs, for i>kR/cs, for uk 
R/cs,and . aj(R/cs) 

Fr=Fre
m<=P8(x-l)e

in'. (21) 

The dimensionless frequencies SlR/cs, in increments of 0.05, 
ranging from 0.05 to 6.0. The static case Q = 0 is excluded. 
The force at the apex equals 2trR2Pem. 

The amplitudes of modal responses Wk, Vk, pk, fk, and ek 

versus forcing frequencies are presented in Fig. 3 for mode 
number k = 2. In graphical presentations, parameters are 
normalized as described in Table 2. Peak responses are ob
served for all these response functions at and only at the 
immediate neighborhood of the natural frequencies for each 
mode. The response curves of fk and ek are similar, because 
both are characterized by the same response function tk. As Q 
T r̂igid> vibration-absorbing phenomena are observed for 
Wk and Vk, and to a less obvious extent for fk and ek, 
because as Q_- firigid, / - oo and Tk ~ 0 (A! - ' J " 1 ) - 0. 
Thus, while Tk — 0 as J — <», it remains an order of (1/A,) 
higher than Wk and Vk, which are of the order of (1/7). The 
response curve is a continuous plot with a frequency in
crement of 0.05. The curve may not be able to resolve the 
vibration-absorbing phenomenon for fk and ek near firigicl. 
Other vibration-absorbing frequencies occurring at fl = iok 

for Wk and pk are easily noted. The additional vibration-
absorbing frequencies of pk at J(Q) = 0 can also be easily 
identified. For pk of very thin shells, the vibration-absorbing 
mode J = 0 may be so close to the natural frequency that the 
vibration-absorbing effect will be dominant in the vicinity of 
resonance. Consequently, the response curve behaves as a 
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MODE NUMBER k 

Fig. 2 Critical frequencies of a petroleum-filled steel shell with h/R = 
0.03 ( for natural frequencies, - - - for the roots of (20), 

for roots of J = 0, and for roots of J ~1 =0) 

AMPLITUDE (IN LOG SCALE) 

5^ S | - 61 < | - - TJ| - W ^ 1 p ^ <D| 

-—AMPLITUDE (IN LOG SCALE) 

Fig. 3 The amplitudes of modal responses to radial loading for a 
petroleum-filled shell (k = 2), h/R = 0.03, and h/R = 0.0003 

gentle, almost flat, curve; peak and zero responses occur 
within a narrow band in the thin shell limit. In addition to 
rigid modes, nondissipating phenomena occur as Q satisfies 
equation (20). Those nondissipating modes appear to exhibit a 
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Table 2 Normalized parameters used in the graphed presentation 

Original form 

QR/cs 

h L 

M 

P 

PsCs2 

p 1 (f)T 
wr 
h L 

'X p 

PjC.S (*)T 

Ps<5 /?2 L p j ^ 2 V / i / -

- 2 

0 

^ " A T . ^ 

Vk, V 

Pk,Ps, Tk, Ts 

?k 

E\\.-Eio 

AMPLITUDE (IK LOG SCALE) 

O M 
33 b 
O 
Z 
o 
-n 
JO u 
m b 
O 
c 
m 
z 
o 
-< A 

c. 

. — AMPLITUDE (IN LOG SCALE) 

Fig. 4 Total response to radial loading at 0 = 90 deg; h/R •• 
and h/R = 0.0003 

0.03 

larger band width than the rigid modes. The amplitudes of 
responses Wk, Vk, and pk for the inviscid fluid problem are 
indiscernible from those of the viscous fluid case given in Fig. 
3. The expressions of the response functions (6)-(9), clearly 
indicate that the contribution of the viscous effect for shell 
displacements and pressure on the shell surface is of small 
order, except in the vicinity of the order of (v/Rcs)

Vl of 
frequencies of peak responses and zero responses, which 
cannot be resolved with an increment of QR/cs equal to 0.05. 
Figures plotted with enlarged scales, as given in Fig. 8 of 
reference [2], show a typical effect of damping on vibratory 
response. Viscosity reduces the peak response and the 
resonant frequency. 

The total response could be obtained by proper super-
positioning. Figure 4 plots the following parameters for the 
viscous fluid problem: the amplitudes of the total radial 
displacement W; the total tangential displacement -V; the 
radiated pressureps; the shear stress rs at the equator (9 = 90 
deg) of the shell surface; and the rate of total energy 
dissipated, En and Ew; Eu and El0 are evaluated by 
superimposing the 11 and 10 modes, respectively. Peak 
responses are observed in the immediate neighborhood of the 
natural frequencies. A comparison of the En and Ei0 plots 
indicates that the use of 11 modes to obtain the total response 

of a point load excitation is adequate, except for the case in 
which the frequency is close to one of the natural frequencies 
associated with the tenth mode. 

The detailed study of the phase lag of modal responses is 
presented in [2]. For mode number k = 2 for the inviscid 
fluid, the phase lag is either zero or - ir. For the response 
function Wk, the phase lag equals - i r for low-frequency 
excitations. As the frequency increases, a phase change takes 
place, with the phase lag switching between 0 and - ir, when 0 
= 0nat., 0 = firigid or fi = wk. The phase lag of Vk follows the 
same rule, except that no phase shift takes place at fl = wk. 
Thus, for O < wk, Wk and Vk are in phase, while for fi > wk, 
Wk and Vk are 180 deg out of phase. The phase lag of pk is 
zero for low frequencies. As fi is increased, the phase shift 
takes place at 0 = 0nat., zeroes at / , and at Q = uk. As to the 
corresponding phase response for the viscous fluid problem, 
the phase lag for Wk has changed little compared to the in
viscid case. A noticeable change in the phase lag for Vk takes 
place as fi becomes greater than the first resonant frequency 
above uk. When Q > uk, the phase responses within the 
narrow band width between linaL and firigid are complicated. 
The resolution of plots in [2] is insufficient. In the domain of 
Q > uk, aside from those narrow band widths, the phase lags 
shift from - -w to + 7r as a result of viscosity. 
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Fig. 5 Additional critical frequencies of petroleum-filled steel shell for Fig. 7 Critical frequencies of a petroleum-filled steel shell under a 
tangential loading, roots of (22) (h/R = 0.03), (h/R = combined loading, "A," root of (25)," v " root of (26), and "." root of (27). 
0.0003), and roots of (23) (h/R = 0.03) Only odd modes solution are presented. 

AMPLITUDE (IN LOG SCALE) 

^ , L l — " I 

PI 

• AMPLITUDE (IN LOG SCALE) 

Fig. 6 The responses of the third mode to tangential loading for a 
petroleum-filled shell, h/R = 0.03, and h/R = 0.0003 

4 Responses to Tangential Loading 

4.1 Critical Frequencies. The peak responses are expected 
to occur as fi — finat . In addition, for tangential shell 

displacement Vk, fluid loading pk, and fk, and energy 
dissipation rate ek, peak responses may also occur as fl — 
^rigid if ^rigid = &k. 

The vibration-absorbing phenomena for Wk occur only as 
^ "* r̂igid ^ uk. For Vk, the vibration-absorbing frequency is 
given by the roots of 

<*k 
•Q2[\+(l+mk)yJ] = 0 (22) 

Figure 5 plots these roots in solid lines and dash-dot lines for 
petroleum-filled shells with h/R = 0.03 and 0.0003, 
respectively. Except for the lowest branch, -the solid lines 
follow the roots of / " ' = 0 , whereas the dash-dot lines follow 
the roots of / = 0. This is easily explained by expression (22). 

The vibration-absorbing phenomena for pk can only occur 
at roots of / = 0. In addition, the nondissipating mode also 
occurs only when the forcing frequency equals the frequency 
defined by 

- cb*2 + Q2 + Q2
T/(1 +mk) +Ckk{k+ l ) ^ 2 / = 0 (23) 

These roots are also shown in Fig. 5 in dashed lines for a shell 
with h/R = 0.03. For higher U, the dashed lines merge into 
solid lines. The nondissipating mode for very thin shells 
follows the root of J = 0 as expression (23) shows. 

4.2 Response Curves. The responses to tangential loading 
are computed for a circumferential line force: 

Fe =Fee
m = -Pb(x)eia'. (24) 

The total force at the equator equals - 2-wR2Pem. 
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Fig. 8 Third mode responses to combined loading for a petroleum-
filled shell, h/R = 0.03, and h/R = 0.0003 

The amplitudes of modal responses Wk, Vk,pk, fk, and ek 

versus forcing frequencies are presented in Fig. 6 for mode 
number k = 3. Peak responses are observed for all response 
functions at and only at the immediate neighborhood of the 
natural frequency for each mode, except those for Wk with 
h/R = 0.0003, as QR/cs approaches 3.271913. For the case of 
viscous fluid, this resonant frequency is associated with a 
large damping component of 0.234651, so that the peak 
response is smoothed out by viscous damping. 

As 0 — Qrigid, vibration-absorbing phenomena are observed 
for Wk. For fk and ek, the vibration-absorbing phenomena as 
^ ~* frigid a r e n o t noticeable in the plot, because fk ~ 
OCl/A^J). Although Tk approaches zero as J — °°, it is of 
0(1/A]) higher than Wk. The response curve is a continuous 
plot with a frequency increment of 0.05 and is not expected to 
resolve the vibration-absorbing phenomena of band width in 
the order of A, for fk and ek near 0rigid. Other vibration-
absorbing frequencies such as zeroes of / for pk, roots of (22) 
for Vk and roots of (23) for Tk are easily noted in the figure. 

While the vibration-absorbing frequencies for Wk and pk, 
which occur at flrigid and zeroes of / , respectively, are in
dependent of h/R (Fig. 6), the vibration-absorbing 
frequencies for Vk, fk and ek are thickness-dependent. For 
very thin shells, y in (22) and (23) become very large. The 
zeroes of (22) and (23) are expected to be very close to the 
zeroes of J. Thus, in the thin shell limit, the vibration-
absorbing frequencies for Vk, fk and ek become close to those 
for pk, as confirmed by Fig. 6. In addition, both the peak and 
zero responses of Vk, pk, fk and ek approach zeroes of / in 
the thin shell limit. They appear as narrowly banded per
turbations on a base curve, which gently peaks near oik. 

The corresponding phase lag is also studied [2]. The phase 
lag of modal response for the inviscid fluid are either zero or 
7r. A phase shift takes place, from zero to w or vice versa, 
when a resonant frequency or vibration-absorbing frequency 
is encountered. Again, for the thin shell limit, both resonant 
frequency and the vibration-absorbing frequency of Vk and 
pk approach the zero of J. The effect of the phase shift is 
cancelled in a narrow frequency band and is not resolvable. 

Viscosity significantly alters the corresponding phase 
responses for the viscous fluid problem. At low frequencies, 
the phase lag of fk starts from - 7r/4 for k = 3. The phase 
shifts as a resonant frequency or a vibration-absorbing 
frequency is encountered. As pointed out in the discussion of 
amplitude response of Vk, pk, and fk the response amplitude 
versus frequency in the thin shell limit appears to form a 
response curve with peaks near the in vacuo frequencies uk 

and o>k. The overall phase pattern seems to respond to this 
general feature with the group phase shift taking place near uk 

and w'k. 

As to the total responses to tangential loading, peak 
responses are observed in the immediate neighborhood of the 
natural frequencies for Wand to a lesser extent for V, ps, TS, 
and E for very thin shells. Because the resonant and the 
vibration-absorbing frequencies are very close in the thin shell 
limit for V, ps, and TS , the response curve behaves as a gentle 
curve with peaks near oik of odd k. 

5 Responses to Combined Loading 

The responses to combined loading are computed for a 
concentrated force of (21) and a line force of (24). The force 
at the apex and the force at the equator are 2iri?2Pexp(/fiO 
and -27r.R2-Pexp(z'Q0. respectively. The net force is zero. 
Under this loading, even mode responses are the same as those 
given in Section 3 for radial loading. 

Peak responses are generally expected to occur in the 
neighborhood of the natural frequency for each mode. Peak 
responses for fk and ek may also occur as fi—Qrigid = o>k. As 
fl—Qrjgid ^ u>k, zero responses for Wk, fk, and ek are ex
pected. Zero response occurs for pk if J = 0. In addition, 
both Wk and pk are of the order of A, if the following 
relationship is satisfied. 

[ f i 2 - uk
2 + -qk(k+\) Q % 2 ] = 0 (25) 

in which 77 = ve/Vr- One root of (25) exists for each mode. 
The solutions for the odd mode are represented by triangles 
(A) in Fig. 7. Also shown in Fig. 7 are the roots of 
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•Cktck
2 + ri[wk

2 • Q2-Q2(l+mk)yJ]}=0 (26) 

as inverted triangles (V) and 

l-Ckcok
2 - (Q 2 - cok

2)J] + r,[^2 

-U2yJ(\+mk) Ckk{k+l)iok
2J]=0 (27) 

as solid circles (•) for odd modes in which Vk and ek (or fk) 
are expected to become vanishingly small. Petroleum-filled 
shell with h/R = 0.03 is assumed. The roots of (27) follow 
those of J~' = 0, for higher frequency excitations and broken 
lines in Fig. 2 for lower frequencies. The roots of (26) follow 
those of J'1 = 0. The h/R has little effect on roots of (25), 
whereas the root of (26) and (27) will follow those of / = 0 in 
the limit of very thin shells. 

The amplitudes of modal responses are shown in Fig. 8 for 
combined loading. Locations of critical frequencies are 
readily noted. The peak and zero responses of Vk,pk, fk, and 
ek are narrowly banded in the thin shell limit. They appear as 
perturbations on a base curve which gently peaks near u>k and 
u'k. The overall phase pattern seems to respond to this general 
feature with the group phase shift that takes place near wk and 
oik. Because the resonant and the vibration-absorbing 
frequencies are very close in the thin shell limit for V, ps, and 
TS, the total response curve behaves as a gentle curve with 
peaks near wk of odd k [2]. 

6 Summary 

To clarify the effect of viscosity on fluid-structure in

teraction, axisymmetric vibrations of a compressible fluid 
contained in a. spherical elastic shell under harmonic ex
citation has been investigated on the basis of boundary layer 
theory. 

An expression for the response to a general harmonic 
excitation is obtained. From this, the response of the shell, the 
fluid loading, and the energy dissipation rate are examined for 
radial, tangential, and combined force excitations. Various 
limiting cases are studied, including the inviscid fluid limit 
and the thin shell limit. 

The essential feature of the modal and the total response is 
determined by resonant frequencies and various vibration-
absorbing frequencies. Characteristics of these frequencies 
and response curves are established. These characteristics may 
have some implications in applications related to the vibration 
of spherical shells containing viscous fluid. 
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Observations on the Steady-State 
Solution of an Extremely Flexible 
Spinning Disk With a Transverse 
L»Ucf U 
The steady deflection of a transversely loaded, extremely flexible, spinning disk is 
studied. Membrane theory is used to predict the shapes and locations of waves that 
dominate the response. It is found that waves in disconnected regions are possible. 
Some results are presented to show how disk stiffness moderates the membrane 
waves, the most important result being an upper bound on the highest ordered wave 
of significant amplitude. A hybrid system of differential equations and boundary 
conditions is developed to replace the pure membrane formulation that is singular, 
and the full fourth-order plate formulation that is numerically sensitive. The hybrid 
formulation retains the salient features of the flexible disk response and facilitates 
calculations for very small disk stiffnesses. 

1 Introduction 

It is the purpose of this paper to examine the steady-state, 
transverse deflections of the most flexible spinning disks, such 
as computer "floppy" disks. Attention is focused on the near-
membrane problem, which is a disk with extremely small but 
nonzero intrinsic stiffness. Solutions are difficult to obtain 
because, as shown by Benson and Bogy [1], the pure mem
brane problem is singular. Higher ordered plate terms may be 
retained in the analysis; however, the leading terms in the 
governing differential equations may be so small, and render 
the problem so delicate, that numerical convergence is im
possible to achieve. Most numerical results in the spinning 
disk literature are for stiffnesses more appropriate to circular 
saw blades rather than computer floppy disks. 

Following the problem formulation of Section 2, the near-
membrane is examined from three different viewpoints; pure 
membrane theory in Section 3, full fourth-order plate theory 
in Section 5, and a hybrid second-order approach in Section 4. 
The membrane equations of Section 3 are used to predict the 
dominant part of the flexible disk response. Despite the 
singularity of this formulation, much can be deduced about 
the eventual solution when the small stiffness is reintroduced. 
It is found that the flexible disk will always have an annulus 
adjacent to the rim which supports steady, transverse waves 
along characteristic arcs.. Depending on the clamping 
geometry and material selection, there may sometimes appear 
a second wave-supporting annulus, disconnected from the 
first, which is adjacent to the clamp. 

the Contributed by the Applied Mechanics Division for publication 
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1982. 

In Section 4, flonsingular, second-order differential 
equations are derived which retain the small disk stiffness 
only in combination with a parameter that grows large. The 
choice of appropriate boundary conditions is discussed. These 
equations may be solved numerically for exceedingly small 
stiffnesses and give promising results. These are used to 
illustrate the results of Section 5 in which bounds on 
dominant waves are established. An examination of the terms 
of the fourth-order plate equations shows that disk stiffness 
moderates the membrane waves, particularly in setting an 
upper bound on the highest ordered wave of significant 
amplitude. 

Reference [1], and the thesis by Benson [2] are the primary 
references for this work. The other spinning disk references 
cited here are representative of an extensive literature, and are 
chosen for their quality and historical importance. The 
Simmonds paper [3] is concerned with free vibrations in a 
spinning membrane and has closed-form solutions in terms of 
hypergeometric functions. Eversman and Dodson [4] examine 
free vibrations in a spinning disk. They numerically calculate 
frequencies of free vibration for low-ordered modes and a 
wide range of disk stiffnesses. The Greenberg [5] and Adams 
[6] papers are representative of more modern works 
specifically directed toward floppy disk design. They take into 
account read/write head interactions and hydrodynamic 
effects from the surrounding air. 

2 Problem Formulation 

Figure 1 shows the geometry of the spinning disk. It is 
clamped at radius a, free at radius b, and has a small thickness 
h<<b. The disk is homogeneous, isotropic, elastic with 
Young's modulus E, Poisson's ratio v, and mass density p. q 
is a steady transverse load and U is the angular velocity, r and 
4> are space-fixed polar coordinates. The problem is non-
dimensionalized by taking 
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Fig. 1 Disk geometry 
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w = u/b, l=r/b, K = a/b 

a = 8D/[pU2b40 + v)], 

• B = ( 1 ~ " \ \ (3 + ">-(1 + y ) " 2 1 2 
p \ 3+v /L a + v)+a-V)K2 r 

Q = 8q/[pti2b2(3 + v)] 

(l + ,) + ( l - , ) , ' " U ) 

where u is the physical transverse deflection of the disk, and 
Z> = E/!3/[12(l - v2)] is the plate bending rigidity. Thus, in the 
context of classical plate theory, the differential equation for 
steady transverse deflection is [6] 

r d2 Id 1 d2 -"2 ! w r ar r a*- ] 

T ^ - 1 ) + K - F ) ] - ^ 

+i[(3f2-D+K1+i)] 
d2w 

(2) 
f 2 r - j v f 2 / j d<j>2 

Associated with this are the boundary conditions of zero 
deflection and slope at the clamp, £" = K 

dw 
w = 0, 

df 
= 0, 

and zero moment and equivalent shear at the rim, f = 1 

d2w dw d2w 
+ v^^- + v „ ,, =0 , ar2 9f 3</>2 

(3),(4) 

(5) 

d3w d3w 32w 

af3 ars*2 ar2 
9w 

-(3-p)-
a2^ = 0. (6) 

Periodicity in 0 is also required 

w(f,4>) = w(f,<£ + 27r). (7) 
The disk response, as governed by (2) consists of two parts. 

There is a fourth-order, biharmonic, "plate" part, preceeded 
by the parameter a, and a second-order "membrane" part 
which is modified by the parameter /3. Here, a will be referred 
to as the "spin stiffness" since it is a relative measure of the 
contribution of plate effects versus membrane effects due to 
spin. Interest is on those systems that are predominantly 
membrane-like, with spin stiffnesses on the order of 10~4. 

The "membrane parameter" (3 combines the effects of the 
clamping radius K and Poisson's ratio v into one number that 
enters into the governing partial differential equation. Some 
of the referenced articles [1-3] treat the simplified case of a 
complete disk with a partial clamp that restrains transverse 
deflections only. For that system K > 0 for the application of 
the boundary conditions, but /3 = 0 in the partial differential 

1 .2 . 3 .4 . 5 .6 

Clamp ing R a d i u s : K 

Fig. 2 Membrane response zones 

equation, equation (1)6 not withstanding. Others admit a full 
clamp [4-6], in which case /3 may be as large as 1 /3 for a thin 
annular disk, K—1 with a small Poisson's ratio, v—• 0. Most 
geometries will have 8 in the range 0 < B< 0.2. 

3 Membrane Operator 

The dominating membrane 
examined 

Lplw] = [ ( r 2 - l ) + ( 3 ( l -

[KM 

operator of equation (2) is 

1 \~| d2w 

(T+F)] 
1 l M r2 + r )J" 

dw 

92w 

d<t>2 (8) 

with emphasis on the influence of the membrane parameter B. 
Lp is classified as elliptic, parabolic, or hyperbolic, if the 
product of the coefficients of the second-order derivatives is 
positive, zero, or negative, respectively [7]. This leads to the 
following divisions in the membrane 

Parabolic: f = l , 

M(^M(^r-{]T-^ 
Elliptic: ri<r<r2; 
Hyperbolic: 0 < f < f,, & < f < 1. (9) 

These results are graphed in Fig. 2, using the more 
meaningful parameters K and v in place of B. The curves mark 
the radii of the parabolic transition circles where the mem
brane switches from elliptic to hyperbolic behavior. A 
horizontal dotted lined separates the lx branch from the fo 
branch, and a diagonal dashed line shows the radius of the 
clamp. It is seen that the membrane can support two 
hyperbolic regions separated by an elliptic annulus. For most 
applications, elliptic behavior is desired as transverse 
deflections die out away from a load. In hyperbolic zones a 
load causes waves to form along characteristic arcs [7]. The 
greatest elliptic area occurs for B = 0, f, =0 , f2 = l/vT=0.577, 

526 / Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Effect of Clamping Radius 
v=.3 all cases 

E f f e c t of P o i s s o n ' s R a t i o 
K= . 310 a l l c a s e s 

-I-Ooo 

Hyperbolic Zone with 
Characteristic Arcs 
Transition Circle 
Elliptic Zone 
Clamped Zone 

Fig. 3 Membrane zones 

reproducing the geometry of reference [1], For 0 = 
7-4V3 -0.0718, ft==ft-[(2/V3)-l]l/3~0.393, and the 
elliptic annulus vanishes altogether. For many disks the clamp 
will extend sufficiently far to obscure the first or both of the 
parabolic circles at ft and f2 • 

The characteristic arcs of the hyperbolic regions are given 
by i//(ft<£) = constant, and satisfy the first-order, nonlinear 
partial differential equation 

"•'('-F)K3)' [(r2 

( ' 4 M F + F ) M ) 
has 

1 

? 
The solution to the equation 
\Hf,</>)=± </>+/($, with 

df l r ( 3 f 2 - l ) + /3(l + r 

= 0. 

the separable 

2r 

(10) 

form 

(ID 
dK r L ( i - r 2 ) + « r 2 - D J ' 

The value of /(f) in the split hyperbolic zones is found by 
integrating within the limits K< f < ti and f2 < "̂< 1. This was 
performed numerically, after first treating the square-root 
singularity at f= 1, and example results are shown in Fig. 3. 
Only one example exhibits the inner hyperbolic annulus, and 
it exists for a very narrow band (ft - K = 0.053) near the 
clamp, and for an unusually small Poisson's ratio (y = 0.1). 
One may conclude that the inner hyperbolic annulus will 
rarely appear and, when it does, will npt support large am
plitudes waves, due to the adjacency of the clamp. The /3 
effect is more important to the ever-present outer hyperbolic 
annulus. Since it may be wide, and is adjacent to the free edge, 
waves of significant amplitude may be generated. In terms of 
the component parameters of (3, we see in Fig. 3 that the area 
of the outer hyperbolic annulus increases as K increases to fo. 
The area of the hyperbolic annulus is also increased for 
decreased Poisson's ratio. 

4 A Nonsingular Second-Order Formulation for the 
Spinning Disk Problem 

Returning to the full fourth-order problem, if we assume 
the separable form 

w(f,«)= SUiV"*, (12) 

QLM)= £&.(fleto*, (13) 
n = 0 

we obtain a set of radial ordinary differential equations and 
boundary conditions 

+ [(f2-l) + /?(l-^)-a(l+2n2)^]z„" 

"n 2[(3" j) +I3(Y
 + ¥) + a ( 4-"2)f] z"' (14) 

(15),(16) 

(17) 

(18) = 0, 

Z„(K) = 0, Z„'(K) = 0, 

zB"(l) + w f l ' ( l)-wi2«H(l) = 0, 

z„'"(l) + z„"(l)-z„'(l) 

- « 2 [ ( 2 - ^ „ ' ( l ) - ( 3 - ^ „ ( l ) ] 

n - 0 , 1 , 2 

Here a prime denotes differentiation with respect to £". The 
form of (12) satisfies the periodicity requirement, and n 
denotes the number of equally spaced nodal diameters 
z„ •expfin^) possesses. In this paper we will focus on the case 
of a single concentrated load at radius f = £, for which Q„ is 
expressed in terms of the Dirac delta function 

Q»(fif)=- 7r£ 
>fl ;«>0] 
I l/2;w = 0J" 

(19) 

The resulting radial modes z„(f",ij) when substituted into (12) 
comprise the Green's function for the spinning disk. For the 
pure membrane problem, differential equation (14) is reduced 
to the second order by taking a identically zero, and replacing 
boundary conditions (15)—(18) with 

Z„(K) = 0, I Z „ ( 1 ) I < ° ° . (20),(21) 

This problem has been shown to be singular [1] as it admits 
modes of finite amplitude at arbitrarily large orders of n. 

One can, of course, work with the full fourth-order for
mulation, but this is unsatisfactory for numerical solution of 
the near-membrane case. An obvious problem of accuracy 
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occurs because the coefficients on the highest two derivatives
in equation (14) are only O(a)l, and this are dwarfed by the
coefficients of the second and first derivatives which are
0(1 + an 2 ), and the coefficient of the zeroth derivative which
is 0[n2(1 + an2)]. Simultaneously it becomes very difficult to
satisfy boundary conditions (16)-(18) which are lost for a=O.
A further difficulty arises due to the nature of the radial
modes ZnG-;~) which are wavelike when ~ falls in the hyper
bolic region of the disk. 2 This is a consequence of using polar
coordinates that cut across characteristic wave fronts. In
order to "see" the radial mode waves, numerical step sizes
must be kept quite small, say no more than (1 - K)/lOO. This
mandates calculation of Zn to many significant digits so that
finite difference calculations for z; through z;", will be ac
curate. Roundoff error increases with the order of the
derivative, and it is illustrative to note that 32-place accuracy
was required in reference [2] to solve for the deflections of
disks with a=O.OOI. Smaller values of a could not be ac
commodated.

It becomes desirable then to find an alternative to both the
singular, second-order, membrane formulation, and the
numerically "noisy," fourth-order, plate formulation. A
promising hybrid approach arises from the observation that,
while a is small, an2 need not be, and an4 can be quite large.
By neglecting terms of O(a), but not terms of 0(an2) in
equation (14), a set of second-order, Sturm-Louiville, dif
ferential equations is produced

1 d [ [ 2 (1 ) 2 1] dZn ]Qn = t dr r (r -1) + fJ 1- r2 - a(1 + 2n ) r2 (if

-n
2
[(3- ;2)+fJ(;2 + ~)+a(4-n2)~]Zn,

n=0,1,2, . . . (22)

Of the two boundary conditions needed to accompany (22),
one is obviously the zero displacement equation (15), but it is

~e., on the order of magnitude of <>.
2Strictly speaking, the leading biharmonic operator in equation (4) makes the

disk problem everywhere elliptic. Nevertheless, the membrane operator
dominates the response for small <>, and it is convenient to retain the labels
"hyperbolic" and "elliptic" to describe the same regions in the disk 'as they
would in the pure membrane.
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not clear what the second equation must be. The choice is
made on the basis of the following heuristic arguments3 •

It is supposed that the second boundary condition derives
from one of the equations (16)-(18), and (21). The membrane
boundedness condition (21) is ruled out because equation (22)
is not singular at r= 1. The zero slope condition (16) is
eliminated as this leads to perfectly flat disk displacements in
the region K::; r::; ~. If, for large n2 , we treat boundary
conditions (17) and (18) as we did the differential equation
(14), we obtain the approximate expressions

3-v
zn(1)=O, z;(l)= --zn(1). (23),(24)

2-v

Of these only equation (24) has an appropriate form for the
circumferential waves that form at the rim of the disk.

Thus equation (24) is tentatively included with (15) and (22)
to form a "hybrid" set of equations for transverse disk
deflection. As a test, calculations were made for the near
membrane system with ~=0.0003, fJ=0.023, v=0.25, K=0.2,
and concentrated loads at ~ = 0.4, 0.5, ... ,0.9. This ap
proximates a Mylar computer floppy disk [2]. A central
difference numerical scheme was employed for the calculation
of zn(r;~), with unequal step sizes used to concentrate nodes in
the wavelike outer region of the disk. The results are shown in
Fig. 4, with transverse displacements multiplied by a scale to
improve legibility. It is encouraging to note that the mem
brane behavior predicted in Section 3 seems to be properly
exhibited. Deflections in the elliptic zone are minimal in all
cases, and when the load is applied on the hyperbolic side of
the transition circle (r2 = 0.548) waves are formed along
fronts resembling characteristic arcs.

Another available test of the hybrid equations is to compare
results with the membrane results for axisymmetric loading,
Qn = 0, n = 1,2,3, . .. The n = 0 equations are the only ones
for which closed-form solutions are available, and it is in
teresting to note that, despite the apparent inappropriateness
of (24) for n = 0, the smallness of a is sufficient to bring the
hybrid solution for Zo into close agreement with the pure
membrane solution. The respective solutions (deflection
under a ring load at (r= ~) are

~ethods of singular perturbation hold promise, but so far have not been
fruitful [8].
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Hybrid Equations 

- C / l + 7 - r 2 , P + y + K2 \ 
(47r)(l+(3 + 27) " \ 1 + 7 - K 2 ' /3 + 7+f2 / Zo 

l 
(4TT)(1+)3 + 2 7 ) M 

/ i+7-r2 _^+7+i2_y f > , 
V l+ 7 +£ 2 " /3 + 7+r2 / ' 

(25) 

Membrane 

1 
Zo: 

(4*)(l+/3) 

/« 
f 

1 - K 2 i+£ 

(26) 

where 

7 = 
1 + 

g ( £ ) = l + 

g(£) 

1 + 7 + /3 

3 - i > 

2 V 2 - K / V1 + 7-K2 (3+7+1 / 
(27) 

Boundary condition (24) is retrieved in (25) for a very narrow 
band near the rim, and it is the only one of the considered 
boundary conditions that gives this match. 

The desired capability to make calculations for extremely 
small spin stiffnesses was achieved. One test case was run for 
a = 1 0 ~ 5 which is well below the value of most computer 
floppy disks. Contrariwise, the hybrid equations should not 

be used for stiffnesses much larger than treated here. This 
hinders comparison with full fourth-order results in a 
mutually compatible stiffness range. A "nearest neighbor" is 
given in reference [2] for the system a = 0.001, (3 = 0, i> = 0.23, 
K = 0 . 2 , and£ = 0.8. Results generated by the hybrid equations 
showed generally good agreement except for a noticeable z$ 
hybrid mode not seen in reference results. This points out a 
problem in making numerical calculations for the near-
membrane problem. As it is almost singular, the near-
membrane is extremely sensitive to small parameter changes 
and numerical roundoff errors. The mismatched z5 hybrid 
mode could be artificially made to rise and fall in amplitude 
with very small changes in the system parameters. More will 
be said about this in the next section. For design applications 
the stability of the solution will be greatly improved by the 
presence of an external damping mechanism (e.g., air) as used 
by Greenberg [5] and Adams [6]. 

5 Dominant Wave Modes and Solution Sensitivity 

In this section an examination is made of the modes z„ 
which dominate the disk response. Sensitivity to small 
parameter changes is also discussed. The discussion focuses 
on the full fourth-order system of equations although it is 
convenient to use the numerical results of the preceding 
section for illustrative purposes. 

As noted in [1] and seen again in Fig. 4, loading in the 
hyperbolic zone causes a dominant wave with « > 2 to stand 
out. For the disks loaded at £ = 0.6, 0.8, and 0.9, the 
respective dominant waves are z18, z19, and z19. For £ = 0.7, 
modes z17 to z23

 a r e present in about equal magnitudes, 
leading to destructive interferance and the relatively flat 
geometry seen in the figure. To illustrate the pattern of modal 
influence, the amplitudes of rim displacements k„ ( l ) l , 
« = 0,1,2, . . . , are plotted in Fig. 5 for the £ = 0.8 case. The 
dominant n = 19 mode stands out, as do other local peaks at 
« = 4, 8, 23, 41, and 56. Higher ordered amplitudes, k„ ( l ) l , 
«>59 , including a final peak lz74(l) I =0.000143 are too 
small to be shown on the graph. For n >75 there is monotonic 
decrease of z„(f) for all f. A large tilting mode n = 1 is also 
present. Observe that the larger modes occur for scattered and 
sometimes large values of n. This lack of monotonicity is due 
to the awkwardness of having to form characteristic wave 
fronts from modes that are intrinisically polar. If the con
centrated load is in the elliptic region of the disk and 
characteristic waves are not formed, then convergence is far 
more rapid and uniform. 

For the example system of Fig. 5, and for other hyperbolic 
loading cases, there is a general trend for the radial modes to 
acquire zeroes (nodal circles) 

z„(f) = 0; K < f < l (28) 

as n gets larger. After a point the trend is reversed and the 
modes become less wavelike and show most deflection in the 
vicinity of the load. This sequence is illustrated in Fig. 6 for 
some of the larger modes from Fig. 5. Another pattern, which 
is observed, is a sign reversal near the index of the larger 
modes. For each of the modes z, , z4, z%, Z19, ZA\ , and Z56, the 
next mode had a similar shape with the same number of 
nodes, but opposite sign and lesser magnitude. For the local 
peak at Z23 the sign change occurred with the preceding mode. 
From z75 on, there were no sign changes and no nodes. 

Much of this behavior can be explained through an 
examination of the last term in equation (14) 

^ ) + ^ + ^ )+«(4 -« 2 )^ ]^ - (29) 

For most f the coefficient of z„ grows as nA and will even
tually come to dominate the rest of equation (14). Thus at any 
distance from a load the balance of equation (14) will require 

"2 [ (3 
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very small values of z„ • This is typified by z7s in Fig. 6. It.is 
possible however that if the quantity in brackets in (29) is near 
zero, the effect can be negated and quite a different solution 
may be possible. We can solve for the index n0 which causes 
the brackets to be zero 

«o = [^ r[(3i4-r2) + /3(i-2 + l) + 4a]] (30) 

This in itself does not explain why specific modes are large. 
That would probably require an eigenfunction study to see 
where the nodal diameters and nodal circles lie, in relationship 
to (30). Still, equation (30) can be used to set some limits on 
the large modes. 

First it will be noted that if the quantity in brackets in (30) is 
less than zero there will be no index n0 which causes (29) to 
vanish. This occurs for f approximately between the tran
sition circle radii ft and ft.. °f equation (9). The presence of 
the small quantity 4a in the polynomial perturbs the roots 
slightly. Thus we may conclude that for large n, z„ will have 
no significant magnitude in the elliptic portion of the disk. 

This is borne out in Fig. 6. Secondly, it is observed that the 
largest possible solution to (30) occurs for f = 1 

-2(l+/3) + 4cr 

f=i -I1 '1 = N. (31) 

From this we conclude that z„ with n>N will be small 
compared to other modes with n<N. It has further been the 
author's experience with numerical results that for small a, 
the sequence z„(0, n=N, N+l, N+2, . . . is positive and 
converges monotonically for all K < f < l . For the example 
results of Fig. 5 and 6,7V=83. 

Note that had we taken a^0 then TV would be infinite, and 
membrane waves of finite amplitude would be possible for 
infinitely many nodal diameters n. This reinforces the 
demonstration of membrane singularity in reference [1]. 
Physically, as n becomes larger and wavelengths become 
shorter, even the floppiest disks, 0 < a < < l , will come to 
resist being bent into infinitely tight waves. 

The floppy disk is extremely sensitive to perturbations in 
material and geometric parameters. Typically a parameter 
change, such as setting (3=0 to model a partial clamp, causes 
the amplitudes of the radial modes to rise and fall without 
necessarily changing the wave numbers n of the important 
modes. It can then occur that a secondary wave mode and a 
primary wave mode, such as z41 and Z\g in Fig. 5, may switch 
roles for a dramatic change in the appearance of the disk. It 
may also happen that the dominant wave mode switches its 
sign while remaining the dominant mode. While an exhaustive 
sensitivity study was not undertaken, it was generally found 
that the disk is highly sensitive to changes in a, j3, K, and £ 
near the transition circle. The disk seemed less sensitive to 
changes in v and £ not near the transition circle. 

6 Summary 

The steady-state response of a spinning disk with a 
transverse load has been studied near the singular limit of zero 
spin stiffness. The near-membrane is shown to support one 
and sometimes two annuli of wavelike deflections. An in
tervening region of exponentially decaying deflections 
disappears as the clamping radius is increased. A nonsingular 
second-order differential equation is presented for the 
solution of radial modes when spin stiffnesses are extremely 
small. This makes possible numerical calculations that would 
be extremely difficult if the full system of equations was used. 
The choice of appropriate boundary conditions for the 
reduced differential equation is discussed and supported 
through heuristic arguments and numerical results. Dominant 
wave modes in the spinning disk are examined and limits are 
established concerning the region where large deflections may 
occur, and the greatest number of nodal diameters a large 
wave may possess. 
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Nonlinear Shell Dynamics-
Intrinsic and Semi-Intrinsic 
Approaches 
The intrinsic approach to the nonlinear dynamics of shells, which was introduced in 
[<$], is reviewed and extended by the addition of appropriate initial and boundary 
conditions of the dynamic and kinematic types to the field equations. The alter
native semi-intrinsic velocity approaches (where the velocity components supply the 
connection between the equations of motion and the time rates of the metric and 
curvature) are also presented. Both linear and rotational velocity forms are in
cluded. The relative merits of these approaches to shell dynamics are discussed and 
compared with extrinsic approaches. 

1 Introduction 

The field equations of the nonlinear statics of thin shells 
can be formulated in terms of several alternative sets of field 
variables. The most important are: 

(a) Displacement Form. Here, the three components of the 
displacement are used. A convenient approach is to resolve 
the vector and the corresponding equations of motion in the 
direction of the base vectors and normal ("basic triad") of the 
undeformed references surface [1], 

(b) Finite Rotation Form. The basic geometric quantities 
are the components of a "rotation vector" which rotates the 
basic triad from the undeformed to the deformed con
figuration. Corresponding static quantities can be the 
components of a stress function vector. It is most suitable for 
cases of very large rotations [9, 11]. 

(c) Intrinsic Form. Here, the basic variables are the metric 
and curvature tensors of the deformed reference surface. 
These are usually represented incrementally by extensional 
and bending strains. The force resultants are occasionally 
substituted for the extensional strains as field variables since 
the latter are ill behaved in cases of almost-inextensional 
deformations. In special variants of this approach the number 
of variables can be reduced through the introduction of stress 
and curvature potential functions. An example is quasi-
shallow shell theory [3, Part 3]. The inherent advantages of 
the intrinsic approach are offset to some extent by difficulties 
encountered in the formulation of kinematic boundary 
conditions. For representative formulations see [4, section 2], 
[2,5]. 

(d) Mixed Forms. The most important case is that of 
(strictly) shallow shell theory which utilizes the displacement 
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in the Cartesian z direction together with a stress function. 
Another variant is the Donnell-Mushtari-Vlasov theory which 
utilizes the displacement in the direction of the normal to the 
undeformed reference surface together with a stress function. 
For discussions, see [10], [3, part 3]. 

Corresponding formulations for nonlinear shell dynamics 
are seemingly restricted by the need for an inertial frame of 
reference for the acceleration terms. Many computer codes 
for shells indeed follow this approach by rotating the 
equations to a global inertial coordinate system which may be 
a Cartesian system [7], the undeformed system, or a stepwise 
updated system. A dynamic formulation in terms of the 
components of the rotation vector and force resultants is 
available but is rather complicated. For the utilization of the 
Cartesian displacement in the dynamics of shallow shells, see 
[8]. 

In a recent paper, this author presented the field equations 
of the nonlinear dynamics of doubly curved shells in an in
trinsic form [6]. The basic variables in the formulation were, 
as in the corresponding static form, the metric and curvature 
tensors of the evolving reference surface with their time 
derivatives. An auxiliary curvature-rate potential function 
was also introduced—which led to a substantial sim
plification. However, the formulation was incomplete in the 
sense that initial and boundary conditions for the field 
equations were not included. 

The first part of this paper completes the formulation of the 
problem of the intrinsic dynamics of shells by presenting and 
discussing appropriate initial and boundary conditions for the 
field equations. It will be seen that some of the difficulties, 
which are encountered in the static case, of satisfying 
kinematic boundary conditions, disappear in the dynamic 
case. Also, most of the classical boundary conditions of shell 
theory can be entirely in terms of intrinsic quantities, so that 
the dynamic intrinsic approach is, in fact, a promising method 
of attack on the dynamics of doubly curved shells with either 
kinematic or dynamic boundary conditions. 

The dynamic intrinsic approach is restricted to shells whose 
evolving reference surfaces are nondevelopable. It is also 
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awkward to implement in some cases of mixed kinematic-
dynamic boundary data. For these and other cases, the 
alternative velocity forms are available. They utilize the 
components of either the rotational or the linear velocity as 
auxiliary variables, connecting the equations of motion to the 
metric and curvature time rates. The loss of some of the 
advantages of the full intrinsic method is compensated for by 
wider applicability and convenience. As in the full intrinsic 
form, the position/displacement vector is excluded from the 
formulation, but the inclusion of the velocity vector (linear or 
rotational) suggests that they be classified as semi-intrinsic. 
An early linear-velocity variant was introduced in [12]. Since 
then, the ingredients appeared in other publications [13, part 
2]. A recent paper [15] presents a detailed study of the 
rotational velocity approach as an initial value problem in the 
Cauchy sense. For more material, see Chapter 3 of [14]. The 
velocity forms are summarily presented in Part 3 of this 
paper. Part 4 discusses the relative merits of the foregoing 
approaches to shell dynamics. In the Appendix, the rather 
trivial example of " rod" dynamics illustrates the concepts of 
the intrinsic approach. Throughout the paper, only Kirchhoff 
motion is considered. 

2 Dynamic Intrinsic Form 

Field Equations. In this section, the field equations for 
intrinsic shell dynamics, introduced in [6] are presented in 
compact form together with basic notations. 

R(u a , t) denotes the position vector of the evolving 
reference surface of a shell with base vectors R „ and unit 
normal n. The comma (,) denotes partial differentiation with 
respect to convected surface coordinates u". Let 

Kinematics: 

i — R „ * R i bap— n ' R , a | 3 (1) 

denote the metric and curvature tensors of the surface, 
respectively. Other commonly used surface quantities are the 
permutation tensor eaB, Gaussian curvature K, a = det(aal3), 
and of the time t.Time derivatives ("rates") are denoted by a 
super dot. Thus R is the velocity, ft is the acceleration, while 
and of the time /. Time derivatives ("rates") are denoted by a 
super dot. ThusR is the velocity, ft is the acceleration, while 
aa/3 bap are the metric and curvature rates, respectively. An 
additional kinematic quantity 0 is appended to the basic 
kinematic variables. It serves as a "curvature rate-potential 
function" and simplifies the transition from the equations of 
motion to the kinematics. 

Considering now the dynamic quantities, the stress 
resultant vector T a and equations of motion are, respectively, 

Ta=naflRifl+mfla\ 

T « l a + q = pft 

(2) 

(3) 

Here, na$ and ma® are force and couple stress resultants, 
respectively, q = (qaRa + q n) is the loading/unit area, p is 
the shell mass/unit area, and the bar denotes covariant dif
ferentiation. All are referred to R. Other auxiliary quantities 
are used for economy in notations and in order to avoid bulky 
equations. These are of no basic importance and are identified 
by asterisks (*) when introduced. 

In terms of preceding definitions and notations, the field 
equations for the intrinsic problem are: 

Motion: 

^ a / 3 — 
1 

(«. -baym^^+qa) 
1 

ba«{n^b 

+ m^\^+q) 

tfaQV = -(A12-A21) 

(4)<*> 

(5) 

(6) 

da/1 — -jQuP +eu/3® 

u=K-lef>^b^d, •pur.v' x 

1 
-'a/3 " (-<»a\{s+bx

edXa) 

Conservation: 

Constitutive: 

(vV) = o 

(7)(» 

(8)<*> 

(9) 

(10) 

(11) 

(12) 

The latter can be any specified algorithm that converts 
strain measures (and possibly their time derivatives) into force 
and couple resultants. For elastic, isotropic, small-strain 
theory, those commonly used in shell analysis (for example, 
8.9-8.10 of [3] or 89 of [1]) should be satisfactory. 

The equations are set in a form that is convenient for 
stepwise time integration [6], An integration cycle goes 
through the sequence (4)-(12), with the geometry taken from 
the previous cycle and updated after equation (9). The dali and 
o>tt for equation (5) are also taken from the previous cycle, but 
subcycling between (5) and (7)-(8) can be performed for better 
accuracy. Symmetrization of (9) is advisable. 

A useful adjunct to the set of intrinsic field equations are 
expressions for the time derivatives of the basic triad of R: 

R, a=o?? aR i ( 3-a) an 

ii = coaR„ 

(13a) 

(136) 

These equations although not needed for the integration 
process itself, are useful for the establishing of kinematic 
initial and boundary conditions. 

Finally, it should be noted that to preserve simplicity, the 
equations of motion do not utilize the refined symmetrizing 
processes which are common in modern shell theory. Should 
one want to utilize this refinement, then the substitution 

naB=n{aff) _ba^m(m m(a0) - _ (m°>e + me<x) 

can be made. Here, «<a,3) and m(a/3) are symmetrized stress 
resultants. Other symmetrizations such as (65) or (74) of [1] 
may also be useful. 

Initial Conditions. The intrinsic shell equations represented 
by equations (4)-(12) require the specification, at an initial 
state of the shell (t = t0), of 10 kinematic (b°al3, a%, d°al3, Q0) 
arid seven dynamic (p0, n^, m^f) quantities. The increase in 
the number of kinematic variables and correspondingly in 
time integrations (only six independent kinematic quantities 
are specified at the initial state of a body in motion) implies 
that the initial kinematic quantities should be so in
terconnected as to satisfy compatibility at the initial state. 
These would be the Gauss and Codazzi equations (2.20 and 
2.22 of [3]) and a rate of compatibility equation (15a of [6]). 

There is no need for additional compatibility requirements 
during the integration, since the intrinsic set is internally 
compatible. 

A shell dynamics problem is normally specified at the initial 
state in terms of the position vector 

.R(«« , / = r0) = R0(Mtt) 

and velocity vector 

R(wV=?o) = Ro(" a ) 
of its reference surface. 

(14a) 

(146) 
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In addition, an undeformed state (which need not coincide 
with R0) 

R = v(ua) (14c) 

is usually (but not always) specified together with its 
mass/area pr. The force and couple resultants of the initial 
state are then obtainable from the constitutive laws by 
utilizing the incremental metric and curvature tensors from r 
to R0, whereas the initial mass/area p0 is obtainable from 
equation (10) which implies that pVo is constant. 

The derivation of the initial intrinsic kinematic set from the 
data of (14) is performed as follows: 

(a) 0% and b°alj are calculated by using equation (1). 

(b) da
ap is obtained from equation (13). 

(c) the d°a0 and fi0 are then calculated through the use of 
equation (7). 

Since the set is derived from real position and velocity 
vectors, it automatically satisfies all the compatibility 
requirements. However, there may exist cases where the initial 
data is supplied directly. Under such circumstances, initial 
compatibility must be carefully checked. An example is the 
experimental acquisition of the strains and strain rates of the 
initial state. 

Boundary Conditions. The boundary of the shell at the 
initial state is defined by a sectionally smooth curve 
La:u

a =fa(S0) on R0) where S0 is arc length. This curve is 
mapped into the boundary curve L:u" = fa(S0) on R, with 
arc length S. The arc lengths are connected by the extension 
ratio X which is expressed in terms of the metric of R: 

x = 1 + £ s = ^r = ( f l^^V?So)' / ! 06) 

Occasionally it may be specified as boundary data, such as 
when the shell is bounded by an inextensional ring (X = 1). 

Let the unit tangent and unit normal to L (in the tangent 
planes of R) be defined, respectively, by 

T=TaR, =x-'y?s 

v=p„Ra c„ = e„nTl 
(17) 

The unit vectors T, V, and n form a basic triad along L. 
Boundary data are directed quantities that are specified 

along L. The crucial test for possible use in intrinsic theory is 
that the data be specified in terms of the triad of L. This will 
be assumed in the sequel. If the data is specified in terms of 
the L0 triad, then displacement [1] or finite rotation [9, 11] 
approaches would be more appropriate to use. 

Dynamic quantities on the shell boundary are forces and 
moments per unit length of L. These are related to the interior 
variables as follows: 

N=nal3vavff 

T=n^uaTp 

Q = m^\avli+(m^vaTli),s 

M=mafivav& 

normal force 

tangential force 

effective transverse shear 

bending moment. 

(18) 

It is noted that dynamic boundary data is usually expressed 
in terms of the intrinsic variables and can be accommodated 
within intrinsic theories. For more details on dynamic 
boundary conditions in nonlinear shell theory see, for 
example, [2-4]. 

Kinematic rotational data in a nonlinear problem for a shell 
of the Love-Kirchhoff type is restricted by the requirement 
that only rotations around the tangents T of I may be 

specified. Considering the fact that T changes with time, the 
common possibility is to specify the angular velocity to around 
T. The relation with the interior variables is 

co°>a=co(S0/) (19) 

It follows from equations (7) and (8) that the specification of 
co as boundary data is suitable for use in the intrinsic theory. 

If, in addition, L = L0 (held boundary) then T = T0, 
and the total rotation around r 

j i, 
0 = 1 co dt (19a) 

becomes intrinsic too. 
"Linear" kinematic data would be the specification along 

the boundary L of the velocity vector 

R = F ( S 0 , 0 = F a R ] a + F n (20) 

where F^.Fare specified as functions of S0 and t. Although R 
is not an intrinsic quantity, its space and time derivatives can 
be converted into intrinsic boundary conditions. The 
procedure is as follows: First, equation (20) is differentiated 
with respect to time. Using equation (13), the result is: 

R = F = (F<* + d^F® + o>aF) Ra + ( F - oiaF<*) n (21) 

Substitution of R into the equation of motion (3) results in a 
dynamic vectorial boundary condition along L: 

T < * l a = p F - q (22) 

which implies three component conditions: 

(n®a I „-ba„mw I x) = p(Fa + d%F11+ coaF) -qa (22a) 

nal3b ajl' 
, ,a0| 

1 all • --F-uaF
a-q (22b) 

The latter equations are (essentially) conditions on the surface 
derivatives of the stress resultants at the boundary in terms of 
the supplied data Fa, F, qa, q, and the additional kinematic 
quantities which are obtained from equations (7) and (8). It is 
expressed in terms of the intrinsic quantities. 

The question may arise whether relevant boundary data was 
or was not lost by converting condition (20) into condition 
(22). Indeed, by differentiating (20) with respect to S0, 
another seemingly separate condition could be arrived at. 

F,So =XRaT« = [F<\So + X ( r V ^ - ^ F ) T < n R , a 

+ (F,So+XZ>a/3F«T<?)n (23) 

When this is combined with (13), the resulting component 
conditions are 

Md?ll + ba
llF-r$KF*)i*=F?s0 (23a) 

M°>0 + baflF')Tf>=-F,So- (23b) 

The requirements set by equations (23) are, however, 
superfluous. A simplifed explanation is as follows: The field 
equations of motion are an internally compatible set which is 
expressed (essentially) in terms of R ,a . The conditions needed 
for the retrieval of R (to within a constant) are the 
specification of R , on L and that of R s at t = t0. However, 
the second data is automatically available from the initial 
conditions. Hence, only R , is needed to complete the data 
(represented by equations 22) and the specification of Rs for 
all t (represented by equations 23) is, indeed, superfluous. 
(See Appendix for illustration.) Nevertheless, the latter may 
be useful for numerical processes where the use of overlap
ping boundary data in addition to the initial data may be 
helpful to avoid error accumulation. 

The methods of treating dynamic, rotational kinematic, 
and linear kinematic boundary data clearly show that many 
types of boundary conditions can be cast in terms of the in-
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trinsic variables, provided that the data can be related to the 
basic triad along L. Homogeneous boundary data is included 
in this category, as are the classical boundary conditions of 
shell theory. 

Some of the more important cases are given in the 
following: 

(a) Free boundary: The requirement is that all the 
dynamic quantities should vanish on L. 

N=T=Q=M=0 (24) 

(b) Clamped (fixed) boundary: Here, the boundary is 
both held (F = 0) and prevented from rotating (o> =0). 
Hence: 

(25) 

(26) 

(27) 

(c) Simply supported (and held) boundary: This is similar 
to the preceding case except that (27) is replaced with 

n0a\0-b
a
em^\x=-qa 

nafibali+mali\afi=-q 

C 0 „ K a = 0 

M = 0 (28) 

(d) Held boundary with rotational elastic restraint: This 
is similar to (b) except that (27) is replaced with 

,dt = kM 
"o 

(29) 

where k is the spring constant. 

Uniform Loadings. These are defined as surface loadings 
such that \/p q is independent of the surface variables ua (but 
may depend on time). The most important are those generated 
by uniform parallel acceleration fields-such as gravity. 

In the case of uniform loadings, the term l/p q drops out of 
the equations of motion (4)-(6) which then become 
homogeneous. These loadings do not affect the deformation 
of the shell, unless linear kinematic conditions are imposed in 
the form of equation (22). 

In many physical applications uniform loadings are related 
to fixed directions in space. The implication is that q in (22) is 
extrinsic so that problems of this type cannot be conveniently 
solved by intrinsic methods. A major exception occurs in the 
case of the held boundary (F = 0). Here T = T0 and v, n are 
completely determined by the angle of rotation <j> of equation 
(19a): 

,n = n0 Cos +1>0 Sin0 

i>= — n0 Sin$ + p0 Cos<£ (30) 

Thus, any loading vector q defined with respect to L0 is also 
intrinsically defined with respect to L, so that a shell with held 
boundaries subjected to uniform loadings can be treated by 
intrinsic methods. 

3 Velocity (Semi-Intrinsic) Forms 

Rotational Velocity Form. Here the components (coa,Q) of 
the rotational velocity vector are used, together with the 
metric, to bridge the gap between the equations of motion and 
the kinematics. It is strongly related to the dynamic intrinsic 
form—which may be considered as a further development of 
it. 

The basic equations stem from representations of the 
velocity and acceleration gradient vectors. The first is 
equation (13a) and the second is 

R«= .4„ f l R
a +£f ln (31) 

Both Aaji and Bg can be expressed in terms of the stress-
resultants though the equations of motion. The first is 
equation (4) and the second is 

B„ = — (n*b^+m*\^+q) ,{nXa\} 

-ba
ym^\^+qa) (32) O 

The main field equations are obtained by time differentiation 
of (13) and comparison with (31). The result is equations 
(5)-(7) for the time rates of («K|8,fi) and corresponding 
equations for the time rates of the o^: 

<Jis = -BSi+daliu
a (33) 

The "rotational velocity form" of shell dynamics consists, 
therefore, of the following equations in sequential order: 

Motion: (4), (32), (5), (6), (33) 
Kinematics: (7), (9) 
Conservation and Constitutive: (10), (11), (12). 

Initial and boundary conditions for this form are the same 
as those of the dynamic intrinsic form, with the addition of oft 
which is obtained at the initial state from (13). The preferred 
mode of solution is again stepwise time integration with 
geometric updating, subcycling and finite approximation 
schemes for surface differentiation. 

The kinematic quantities at the velocity or accleration levels 
are interrelated by three compatibility conditions that result 
from the conditions set on vectorial gradients in order that the 
original vector exist [6]. Thus, if 

is a vectorial gradient, then the integrability requirement 
ea/3F I a/3 = 0 implies the three conditions 

(34) 

(35) 

The application to the velocity or acceleration gradients is 
done by identifying (faffifp) with (dafS, - «„) or {Aaf>,Bp), 
respectively. 

The compatibility equations are satisfied automatically by 
the rotational velocity form. The explanation is that^4a|3 and 
Bp are defined in terms of the three components of the ac
celeration vector. The elimination of these components from 
the equations is equivalent to the compatibility equations, as 
can be shown by direct calculation. 

However, the use of some of the compatibility equations as 
a substitute to their corresponding equations of motion may 
lead to useful results. The application of equation (34) to (dali, 
— o)p) and its inversion has led to equation (8) of the dynamic 
intrinsic form, which has been used instead of (33) for shells 
with KT±0. In a similar fashion if ba

a ( ̂  0 then application 
of (35) to(dap, - cop) leads to the expression 

Q={ba")-1e*'(-wl,\y + -ba
yaaP) (36) 

0yea6l e"'e 

The latter equation can be used instead of equation (6), if so 
desired. Another useful equation is obtained by applying (7) 
and wp to (34). Elimination of fi from the result leads to 

i(2««0 l7*+6«7<»,3 l j j=O 

The later equation can be helpful for deriving mixed and 
approximate forms of shell dynamics. 

Linear Velocity Form. Here, the three components of R 
are used as auxiliary variables: 

R=K°R„ + Kn (37) 

Space and time differentiations of (37) and the use of (13) 
yield the relations (see also [13],5.2.5): 

d«B=V*\B-b"sV (38)* 
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a^-V.a-bapV* (39)* 

R= ( Va + Vua +d^)B.:a + ( V- Vaua)n (40) 

Introduction of (40) into equation (3) yields the component 
equations of motion in the form 

Va= — (nlia\IJ-b
a
l3m

x',\k+qa)-d^Vl}-(1i
aV (41) 

V^- (n^bafi+m^\a&+q) + V^a (42) 
P 

Also, from equation (7): 

tfa/3
=cU +dpa (43) 

The other equations of the system remain unchanged. The 
"linear velocity form" consists, therefore, of the following 
equations in sequential order: 

Motion: (41), (42) 
Kinematics: (38), (39), (43), (9) 
Conservation and Constitutive: (10), (11), (12). 

The remarks made in previous sections regarding 
preferred modes of solution apply in this case too. The 
specification of initial conditions follows directly from (14), 
(1), and (37). 

Boundary conditions of all types can be accommodated as 
long as they are specified with respect to the triad of L. These 
include dynamic conditions (N,T,Q,M), kinematic conditions 
{Vava,V

aTa,V,uava), or mixed conditions. For example, a 
"normal diaphragm support" implies the conditions: N = 
VaTa = V = M = 0. On the other hand, a fixed (in space) 
diaphragm support is extrinsic and should be treated by a 
fully Lagrangian displacement or rotation approaches. 

4 Discussion 

The two forms of the shell equations presented here—in
trinsic and semi-intrinsic—are useful in certain types of shell 
dynamics problems. The relative advantages offered by these 
approaches are: 

(a) They are well adapted to cases where the boundary 
conditions and loading are defined relative to the deformed 
shell. 

(b) In numerical solution processes, the time-consuming 
operation of recalculating the position vector in each in
tegration cycle is bypassed. 

(c) Shell problems where relatively small strains are 
superposed on large motion can be dealt with in a natural way 
without numerical difficulties since the "rigid" component 
separates out. 

(d) The equations are defined in terms of the deformation 
variables. This makes the formulation simple and more direct. 

The two main disadvantages are obvious: 

(/) They are very awkward to use when the data is extrinsic 
(i.e., defined in terms of fixed directions in space), although 
some important exceptions exist. 

(») They lose much of their effectiveness when the position 
of the shell is a major objective of the analysis. 

A few remarks are in order regarding the relative merits of 
the various semi-intrinsic and intrinsic forms. 

The linear velocity form offers the following advantages: 

(a) There are no restrictions on the type of shell to be 
analyzed. 

(b) Natural, kinematic, and mixed boundary conditions 
can be accommodated. 

(c) It can treat problems involving interaction with 
surrounding media. Usually, normal velocities and loadings 
are matched between shell and medium, while tangential 

conditions would range from qa = 0 for a frictionless fluid to 
match Va for a fully adherent medium. 

The intrinsic approach offers the following useful features: 

(/) The extensional and bending components of the 
deformation are separated. Small strain approximations are 
easier to make and the important inextensional mode of 
deformation falls out clearly, 

(if) The utilization of velocity components in the field 
equations of the velocity forms leads occasionally to 
numerical difficulties in cases of small deformations 
superposed on large velocities. This is largely avoided in the 
full intrinsic approaches. 

The rotational velocity approach occupies an intermediate 
position between the previous two. It is capable of treating all 
types of shells and also separates the bending and extensional 
modes of deformation. Yet, it is awkward in handling some 
types of mixed boundary data and can still lead to difficulties 
in some cases of large velocities and small deformations 
(although less so than the linear velocity approach). It has 
more time integrations than the other two approaches but 
compensates for this by needing less surface differentiations 
at the kinematic level. 

A sound approach to the shell problem is to carefully weigh 
the advantages and drawbacks of the various available means 
and algorithms for solving the problem at hand. The main 
objective of this paper is to present the case for including the 
intrinsic and velocity approaches among these tools, so that 
they may become the preferred methods for appropriate 
objectives and data. 
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A P P E N D I X 

The Longitudinal Dynamics of a Rod 

This is the simplest configuration within which the concepts 
of intrinsic dynamics can be examined. 

Denote the longitudinal coordinate of a rod at its unstressed 
and current states by £ and x, respectively, with x = i (£ ,0 -
Let TV be the longitudinal force, A the cross-section area, E the 
elastic modulus, p the mass/unit length, q the axial load/unit 
length, and e the strain (that represents the metric). For 
simplicity, the small strain approximation will be used. With 
these notations and approximation, the rod equations are: 

Motion: N>+q = px 

Kinematics: e=x^-l 

(A A) 

04.2) 

Constitutive: t=N/EA (A3) 

Initial conditions: x,x supplied at t —t0 for all £. 04-4) 

Boundary conditions: Either N or x (or x) supplied at 

£=0,L for all t (4-5) 

Here, L is the length of the rod at its undeformed state. In 
the displacement form, defining u — x — £ and eliminating 
the other variables, the field equation becomes 

"IEA ii-q/EA (A6) 

with 

initial conditions: u, u supplied att = t0 

boundary conditions: u,^or u supplied at £ = 0,L. 

The intrinsic (strain) form, is obtained by differentiating 
(A .6) with respect to x. The result is 

« > { ? - p / f i 4 £ - — q>t (A J) 

The initial conditions are also obtained by spatial dif
ferentiation and are: 

e, e supplied at t — t0 04.8) 

The dynamic boundary condition is the specification of N at £ 
= 0,L. To obtain the kinematic boundary condition, it is 
assumed that either x o r x are specified at £ = OX for all /, 
from which x\=0 = / , (r) and xi=L = f2 (t) are extracted at 
the boundary. This is introduced into 04.1), and the resulting 
kinematic condition at £ = 0,L transforms into: 

N,t_=pfi-q = Wj(t) specified at £ = 0,L 04.9) 

Finally, converting from forces to strains, the boundary 
conditions become 

either eore , ; are specified at £ = Q,L (A.9a) 

The similarity to the procedure of the intrinsic dynamic 
approach are obvious. Some of the main points are: 

(a) Spatial differentiation of the equations of motion. 

(b) The kinematic boundary conditions are transformed 
into conditions on the derivatives of th metric. 

(c) Uniform loadings are represented as boundary data 
only. 

(d) Neither position nor velocity appear in the formulation. 

(e) The original velocity data profile (along the beam at / = 
t0 and at the boundaries £ = 0,L for t>ta) is retrievable from 
i(t = t0),fl and / 2 to within the constant x(£ = 0, t = ta). 
The latter is, however, immaterial in Newtonian mechanics. It 
follows that no relevant data is lost in the transformation to 
intrinsic conditions but the system has been cleared of 
nonessential data. 

STANDARD INTERNATIONAL UNITS 

Effective July 1, 1974, all manuscripts submitted to the JOURNAL OF APPLIED MECHANICS must use 
Standard International Units wherever units are used in text, figures, or tables. In addition to the SI units, 
other units may be included parenthetically or in footnotes if the author so desires. Authors of manuscripts 
currently being processed will be requested to append SI units if they are not already included. 
A handbook entitled ASME Orientation Guide for Use of SI (Metric) Units is available to authors on 
request to the Technical Editor of the JOURNAL. 

Professor C. S. Hsu 
Department of Mechanical Engineering 
University of California 
Berkeley, Calif. 94720 

ASME is also preparing a series of text booklets for specific applications to various fields. 
See page 698 for a list of titles. 

536/ Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. Kyriakides 
Assistant Professor. 

E. Arikan 
Research Assistant. 

Department of Aerospace Engineering and 
Engineering Mechanics, 

The University of Texas at Austin, 
Austin, Texas 78712 

Postbuckling Behavior of Inelastic 
Inextensional Rings Under 
External Pressure 
This paper deals with the problem of predicting the postbuckling configuration of a 
thin, inextensional, inelastic ring under external pressure. Previous work has shown 
that the postbuckling configuration of such a ring is unstable up to the point where 
the first two diametrically opposite points on the ring's circumference first come 
into contact. The presented analysis deals with ring configurations past the first 
contact. It is shown that the configuration is stable and that for plastic materials, 
multiple contact points tend to develop. Collapse experiments on thin tubes are 
consistent with the analytical predictions. 

Introduction 

A large deflection formulation of thin, inelastic, inex
tensional rings under external pressure was presented in 
reference [1]. It was shown that the response of such rings is 
characterized by a limit load type of instability (Fig. 1). The 
ring configurations in the unstable regime, beyond the limit 
load, were obtained through a displacement-controlled 
numerical procedure. The configurations were successively 
calculated until the first two diametrically opposite points on 
the ring circumference touched. A typical collapse sequence 
followed by such a ring is shown in Fig. 2. 

This analysis was motivated by a study of the problem of a 
propagating buckle [2-4]. In this problem a local damage on a 
long pipe under external pressure propagates flattening the 
whole pipe. The lowest pressure at which a buckle will 
propagate is known as the Propagation Pressure (Pp). Thus, a 
buckle can be initiated at any pressure between the 
propagation pressure and the buckling pressure of the un
disturbed ring. The ring response is also characterized by two 
such bounding pressures (Fig. 1). The limit load is associated 
with the buckling pressure and the lowest point on the 
response with the propagation pressure. More details about 
this comparison can be found in [2]. 

The severity to which the pipe is deformed by a propagating 
buckle depends on the pressure difference between the 
pressure during the collapse process and the propagation 
pressure of the pipe. Figure 3 shows four cross sections of a 
pipe flattened by buckles initiated at different pressures. 
(From left to right P/Pp = 1.0, 2.3, 3.0, 3.3.) The gap between 
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the opposite walls of the collapsed cross section is caused by 
unloading (spring back). In the loaded condition the sections 
develop a progressively larger contact area. 

It has been observed [5] that for certain combinations of 
geometric and material parameters the deformation induced 
by the propagating buckle causes fracture along the sharp 
corners of the cross section (Fig. 4). 

This paper carries the analogy between the ring and the 
propagating buckle further. The purpose is to develop a 
simple way of predicting the maximum strain in the collapsed 
pipe for various geometric and material parameters. Ring 

Fig. 1 Large deflection response of inelastic rings 
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Fig.4(a)

Fig.2 Collapse sequence of circular ring under external pressure

Fig.4(b)

Fig. 4 Pipe fractured during flattening caused by a propagating
buckle

Fig. 3 Cross sections of pipes flattened by propagating buckles
initiated at different pressures

configurations beyond the one where two points first touch
are examined and the response obtained. The solution
procedure is the same as in [I] with obvious modifications to
deal with the contact problem that develops. In addition, the
constitutive behavior is modified to include elastic unloading
necessary for this part of the solution.

Fig.5(a) Equilibrium of elemental ring section

The Problem

Fig.5(b) Problem geometry after first touchdown

Fig.5

A B s C
\ ,

'-, ---'---

Constitutive Behavior

For simplicity only bending stresses will be considered in
this formulation. This of course implies that the analysis is
restricted to higher values of D/t where the bending stress is
much higher than the hoop stress. A simple calculation shows

Consider a circular ring of mean radius R, thickness t, and
unit width, under external pressure P. The midsurface of the
ring cross section is assumed to be inextensional. The ring
material is assumed to be inelastic and the a- E behavior is
idealized by a bilinear strain-hardening material. The
equilibrium configurations of the ring during the collapse are
to be determined. The nonlinear equations describing the
large deflection response of the ring, up to the point of first
contact, can be found in [1]. These are solved numerically
through a finite difference formulation and a displacement
controlled procedure.

After first contact a new formulation is necessary to deal
with the progressive growth of the contact area. In addition,
the ring section close to the lift-off point undergoes reverse
bending. Since this section has previously been plastically
deformed, reverse bending causes unloading.

The contact problem which develops is dealt with by
making various simplifying assumptions customary for this
type of problem [6-8]. It is assumed that the ring sections in
contact are flat and in complete contact up to the point of lift
off, at which a concentrated (point) shear force is added to
equilibrate the uplifted section (see Fig. 5(b».

The equilibrium equations have been developed in
equations (2) of [1]. The same notation and sign convention
will be used here (see Fig. 5(a». For simplicity, the midsurface
of the ring cross section is assumed to remain inextensional.
This is a customary assumption but restricts the analysis to
relatively thin rings (D/t> 30). The geometry is also defined in
the same way as in [1].
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Fig. 6 Constitutive relationships 

that this assumption is consistent with that of inextentionality 
(i.e., acceptable for Dlt>30). 

A bilinear approximation to the o-e relationship of the 
material (Fig. 6(a)) is used. Let the stress at the outermost 
fiber at a point on the cross section follow a path as that 
shown in Fig. 6(a). Both the bilinear elastic (no plastic 
unloading) as well as the multilinear elastoplastic material will 
be considered. For the latter case, an intermediate hardening 
rule is assumed (this can easily be modified to isotropic or 
kinematic hardening). The corresponding moment-curvature 
relationships in nondimensional form can be expressed as 
follows: 

(a) Loading to KX 

M=k k<\, (la) 

M=-K- - f l - - ) TT + ; r ( l - - ) , * > l . (lb) 
a. 2 \ a/ K 2 \ a/ 

(b) Unloading From kl 

M--^lO-^O-^-O-^O-i)*' 
K2 < K< Kj 

l \ r l l *• K 

(lc) 

V a/L 2 k2 a 

•0-;) 
( - - : ) 

3 / . 1 

IN 2 

K) 
2b'('-i)-k. 

] K<K2 (\d) 

where 

M= 
6M KtE 

2a0 

dd0 
and K= -—-

dS 

dd 

d~S' 
(2) 

Here dd0/dS represents the initial curvature of the unloaded 
ring and a = E/E' is the ratio of slopes of the bilinear stress-
strain representation. Nondimensionalizing all equations 
appropriately one obtains: 

dH dV - . n 
= - P c o s 0 , =-Psmd, 

ds ds 

— =H cos 6+V sine, 
ds 

dP 

ds 

de de0 

ds ds 

dy 

ds 

- ( T X ! 
n dx 

= cos e, — 
ds 0 < 5 < ( l - f ) 

)k(a,M), 

= - sin e, 

(3) 

where k(a,M) is obtained by solving the appropriate, in each 
case, constitutive equation, i.e., equations (la-d). 

All ( ) quantities are nondimensionalized as follows: 

S = 2S/TTR, X = 2X/TTR, y = 2y/irR 

H=lTHR/a0t
2, V=3irVR/o0t

2, M=6M/a0t
2 

2 

(4) 

*-!-(?)(£)• 
The problem is solved by prescribing the length of the part of 
the ring that is in contact and then seeking the equilibrium 
solution. As a result the pressure P is an unknown parameter 
of the problem. Let the length of the ring section in contact be 
£. From Fig. 5 the problem boundary conditions are: 

H(0) = 0, M ( 1 - £ ) = M „ , 

(5) 

M0 is 

0(0) = 0, 

j>(0) = 0, 

found by solving 

k(a,M0) 

0(1 - ^ ) =TT/2, 

i ( i - ? ) = € , 
j ( l - O = 0 . 

ir\R/\a0/ ds ' 

Equations (3)-(5) can be expressed in vector form as 

du 
ds ~ 

when 

and 

f(s,u), 0 < ^ < ( 1 --a 
; u = (H,V,M,6,P,x,y), 

«i(0) = 0, 

M4(0) = 0, 

"7(0) = 0, 

« 3 ( l - f ) = A/0l 

w 4 ( l -£ ) = ir/2, 

« 6 ( i - 0 = f. 

(6) 

M 7 ( 1 - O = 0 . 

Equations (6) constitute a two-point, nonlinear, boundary 
value problem which is solved numerically. The interval 
se[0,l] is descretized into AT(~51) points. £ is prescribed each 
time by making it equal to the length of the last m elements, m 
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is incremented by 1 each time. Equations (6) are expressed in 
finite difference form. The resulting nonlinear equations are 
solved using Newton's method. 

Solution 

(a) Bilinear Elastic Case. First consider a material that 
follows the same path for both loading as well as unloading 
(e.g., bilinear elastic (la) and (lb)). The collapse process, up 
to first contact, is the same as in [1]. When contact is 
established at A, equal and opposite reactive forces develop 
over the section in contact. This causes a change in the ring 
response from an unstable one (in some cases, depending on 
D/t, neutrally stable) to a stable one. Further deformation of 
the ring is achieved as follows. With all other parameters kept 
constant, the curvature at point A is gradually reduced to 
zero. For each value of prescribed curvature the complete ring 
solution is found. This step was found to be particularly 
important in the case of relatively thick rings, where the 
pressure has to be increased substantially, before the cur
vature at A is reduced to zero. The second step involves 
gradual increase of the contact length from zero, to a length £. 
These sections are assumed to be flat along the line y = 0, for 
all subsequent deformation. Thus the problem domain is 
reduced to 1 - £. The point (£,0) represents the lift-off point. 
The slope and curvature are assumed to be zero and the 
unknown concentrated shear force at this point is one of the 
unknowns found by the iterative procedure described in the 
foregoing. This solution scheme is continued by increasing the 
value of £ by A£( = 0.02). The complete prebuckling and post-
buckling load-displacement relationship of the collapsed ring 
is shown in Fig. 7. After the first touchdown, the load-
displacement behavior becomes stable. Although a rather 
"soft" response is observed at the initial stages of this stable 
collapse process, this quickly changes to a much "stiffer" one 
for higher pressures. 

The ring collapse configurations past the first contact are 
shown in Fig. 8(a). The area of contact is represented by a 
straight line along ^ = 0. For the case presented, at pressure 
Pc, about 40 percent of the ring circumference is flat and in 
contact with the opposite wall. 

The moment distribution in the ring quadrant at different 
stages of contact is shown in Fig. 9. If these are compared 
with the moment distributions in the ring at first contact 
(P/Pc =0.2468), it becomes evident that during the collapse 

— Plastic Case 
•— Nonlinear Elastic Case 
o Experimental Results 

process part of the ring unloads to accommodate the reverse 
bending required by the prescribed displacement field in the 
area of contact. 

(b) Elastoplastic Case. Typical structural metals have 
elastoplastic material behavior. The analysis was generalized 
to include such material behavior. For simplicity a multilinear 
ff-e curve is used (Fig. 6(a)) with permanent deformations 
being assumed to take place during loading. The 
corresponding moment-curvature relationship at a point (Fig. 
6(b)) is represented by (lc) and (Id). These are functions of s,, 
the maximum value of curvature achieved in the monotonic 
loading branch. 

The solution follows the same lines as the nonlinear elastic 
case discussed earlier i.e., a displacement-controlled 
procedure is followed where the area of contact is increased 
step by step and the pressure is treated as one of the problem 
unknowns found iteratively. The main difference is that 
during this iterative procedure the moment at every point is 
compared to the highest moment at the same point in the last 
converged equilibrium configuration. If the moment is found 
to decrease then the relationships (lc,d) are used, with K, 
being the curvature at that point in the last equilibrium 
configuration. If the moment is found to increase then (la, 
lb) continue to be used. If during the iterations a point first 

Fig. 8(a) 

Fig. 8(b) 

Fig. 8 Ring collapse sequence after first contact 

M(S) 
(xlO5) 

O.I 0.2 0.3 8 

Fig. 7 Complete load-displacement behavior of ring under external 
pressure 

Fig. 9 Moment distribution at different load conditions (nonlinear 
elastic case) 
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Fig. 10 Maximum strain (curvature) as a function of pressure 

unloads along BC and then reloads, it is forced to follow the 
path CBF(see Fig. 6(b)). 

The load-displacement behavior of the ring is also shown in 
Fig. 7. As in the case of the nonlinear elastic problem the 
response following first contact is stable. The plastic response 
is "stiffer" than the nonlinear elastic one, especially at the 
initial stages of loading. A relative "softening" is observed in 
the response for pressures close to the buckling pressure. The 
reason for this should become clear from what follows. 
Experimental measurements on buckled circular tubes are 
also included on the same plot for comparison (see the next 
section). Although not exactly the same as the theoretical 
predictions, the experimental results exhibit the same 
behavior as the results predicted by the plastic material and 
add credibility to most assumptions made in the solution 
process. 

The sequence of cross sections obtained during the collapse 
process that follows first contact, is shown in Fig. 8(b). This 
sequence is distinctly different from that obtained for the 
nonlinear elastic material. In the plastic case a much smaller 
area of contact develops. At some pressure the middle part of 
the quadrant sustains bending which leads to the development 
of a second contact area. The bending of this midsection of 
the ring is thought to be responsible for the "softening" 
observed in the response curve for higher pressures. For all 
cases considered the solution procedure was pursued up to 
and until the second contact developed. For the sample 
problem presented second contact occurred very close to 
P/Pc = 1. For other combinations of material and geometric 
parameters it could occur below or above this value. It was 
not thought prudent to pursue the solution beyond this point. 
It is conceivable though, that for different parameters, a third 
or more contact points would develop. The existence of the 
second contact area in the problem at hand, is the subject of 
an experimental investigation presented in the next section. 

The purpose of this investigation was to develop a relatively 
simple model for predicting the maximum strain in the ring 
during any stage of the postbuckling path. The maximum 
curvature is plotted as a function of the dimensionless 
pressure parameter in Fig. 10. (The curvature is maximum at 
s = 0.) A big difference is observed between the results from 
the two materials with the nonlinear elastic estimate of 
curvature being much higher than the plastic case. 

The moment distributions in the ring before buckling, at the 
instant of first contact, and at the instant of the second 
contact, are shown in Fig. 11. The maximum positive value of 
moment is seen to shift away from s = 1 after first contact and 
is the cause of the severe bending observed in the midsection 

2.0 

Section in 
Contact 

-2.5-1 

Fig. 11 Moment distribution at different load conditions (plastic case) 

of the ring circumference, preceding and leading to the second 
contact point developing in that area. The section in contact is 
assumed to remain flat and in contact for all subsequent 
configurations. As a result the moment distribution remains 
constant and has a value given by the equation: 

ds ' 
(7) *(^)=i(!)© 

Experimental Observations 

The existence of more than one contact areas in the cross 
section of a ring collapsed by external pressure, was first 
recognized from the preceding analysis. Postmortem 
examination of many pipes buckled in a previous ex
perimental program [2] showed that some but not conclusive 
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Fig. 12 Schematic of optical setup

evidence existed for this behavior. As a result, a separate
experiment was set up with the specific purpose of obtaining
the geometry of the cross sections of rings in the postbuckling
regime. The experiments were carried out on aluminum
D606l-T6 tubes with diameter (D) of 1.0 in. (25.4 mm) and
thickness (t) of 0.020 in. (0.50 mm).

The experimental procedure involved two stages. In the
first stage the tube was collapsed from the original round
cross section to one that has the typical "dog bone" shape,
with just one contact point. As seen from Fig. 2 the post
buckling part of this path is unstable so a volume-controlled
propagation procedure was used to flatten the tube. The
experimental procedure used is similar to the one described in
[2] for determining the propagation pressure of pipes.

The second stage of the experiment involved developing a
technique for measuring the deformation of the pipe cross
section from this point on. The pipe was already collapsed
and as a result any further displacements were relatively small
in magnitude. Since the measurements were required to be
made while the tube was under pressure, it was necessary to
use a noncontacting, remotely controlled measurement
technique. The shadow moire method (parallel illumination
parallel receiving) was chosen (see [9 and 10] for details about
the method). A ruled glass plate was placed onto lhe collapsed
pipe in such a way so as to touch it only at two places. It was
secured in place with elastic bands so that continuous contact
with the tube, as it deformed under pressure, was guaranteed.
Subsequently the tube was placed in a transparent pressure
vessel and pressurized (water on air). The tube was fixed in
space so that no rigid body movements were allowed during
pressurization. A collimated light beam from outside the tank
was pointed toward the grating and a camera was used as the
viewing instrument. The geometric arrangement of the light
source, grating, and camera are shown in Fig. 12.

Fringes are formed by interference between the shadow
formed by the incoming light beam on the deformed surface
and the master grating. This fringe pattern can be related to
the out-of-plane displacement of the surface onto which the
shadow is cast. As the pressure was raised the geometry of the
surface changed. A set of moire patterns obtained from one
such experiment are shown in Fig. 13. The one dimensionality
of the problem is demonstrated by the parallelity of the
fringes. A digitizer was used to record the position of each
fringe. The order of the fringes was decided by monitoring the
position of contact between the tube surface and the glass
plate (zero-order fringe). Knowing the angles (31 and (32' the
order of the fringe (n), and the grating pitch (A), the out-of
plane displacement (w) of the surface was obtained from the
expression
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Fig.13 Shadow moire patterns and profiles of the tube cross sections
at different external pressures

nA
w= .

tan(31 + tan(32

A digital calculator and a plotter were used to calculate and
plot the profiles as obtained from these measurements. The
results are shown in Fig. 13. Since only the out-of-plane
displacement of one side of the pipe was measured, it was
impossible to define the points of contact. In addition, in
most experiments carried out, a slight asymmetry in the
geometry caused one side to develop the second touchdown
before the other. In spite of these differences both the
pressure values as well as the profiles demonstrate the validity
of the numerical predictions.

In addition to measuring the out-of-plane deformation, the
change of length of the maximum diameter of the buckled
tube was obtained photographically for different values of
pressure. These values, normalized by P c ( = [EI4(1 
p2)](tlR)3, are plotted for comparison with the analysis in
Fig. 7. The agreement with analysis is quite good.

Conclusions

The complete postbuckling sequence of equilibrium con
figurations of an inelastic inextensional ring under external
pressure has been obtained. The pressure-displacement
response is characterized by a limit load that leads to in
stability and a stable branch that occurs after contact between
the ring's opposite surfaces is established. The stable branch
of the response and the ring configurations associated with it
have been shown to be quite different in nature for the
nonlinear elastic and elastoplastic cases. In the latter case
multiple contact points were shown to develop. The existence
of these was also verified experimentally. The results for the
nonlinear elastic case compare well with those of Flaherty et
al. [6], where only linearly elastic material was modeled.
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Free Vibration of a Circular 
Cylindrical Shell Elastically 
Restrained by Axially Spaced 
Springs 
An analysis is presented for the free vibration of a circular cylindrical shell 
restrained by axially spaced elastic springs. The governing equations of vibration of 
a circular cylindrical shell are written as a coupled set of first-order differential 
equations by using the transfer matrix of the shell. Once the matrix has been 
determined, the entire structure matrix is obtained by the product of the transfer 
matrices and the point matrices at the springs, and the frequency equation is derived 
with terms of the elements of the structure matrix under the boundary conditions. 
The method is applied to circular cylindrical shells supported by axially equispaced 
springs of the same stiffness, and the natural frequencies and the mode shapes of 
vibration are calculated numerically. 

Introduction 
This paper presents an analysis of the free vibration of a 

circular cylindrical shell elastically restrained by several 
springs uniformly distributed along the circumference of the 
shell, in which the transfer matrix approach is used. Circular 
cylindrical shells play an important role in many industrial 
fields, and therefore a considerable number of papers are 
available on the vibration of the shells. Leissa [1] collected 
and reviewed the comprehensive literature dealing with the 
vibration of shells up to 1972. Since then, Dym [2], Goldman 
[3], Kumar [4], Chandra and Kumar [5-7], and Chung [8] 
studied the free vibration of cylindrical shells by analytical 
solutions of vibration equations. Cunningham and Leanhardt 
[9], Grief and Chung [10], Sharma [11-13], and Tonin and 
Bies [14] also analyzed cylindrical shells by the Ritz method; 
Soedel [15] by the Galerkin method, and Gladwell and Vijay 
[16], Ramamurti and Pattabiraman [17], and Delpak and 
Hague [18] by the finite element method. Recently, Ludwig 
and Krieg [19] have studied cylindrical shells stiffened by a 
rigid ring at an edge. However, there are no papers dealing 
with the cylindrical shells reported here. 

For the purpose of this study, the equations of free 
vibration of a circular cylindrical shell based on the 
Goldenveizer-Novozhilov theory are written in a matrix 
differential equation of the first order by use of the transfer 
matrix of the shell. The transfer matrix is expressed con-

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, July 1982; final revision, February, 1983. 

V/////////////^^^^^ 

Fig. 1 A circular cylindrical shell elastically restrained by axially 
spaced springs 
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veniently by a power series solution to the matrix equation, 
and the entire structure matrix of the shell is obtained as the 
product of the transfer matrices and the point matrices at each 
spring. The frequency equation is derived with only terms of 
the elements of the structure matrix necessary for the 
calculation under a given combination of boundary con
ditions. 

By the application of the method, the natural frequencies 
(the eigenvalues of vibration) and the mode shapes are 
calculated numerically for circular cylindrical shells elastically 
supported by axially equispaced springs of the same stiffness, 
and the results are presented in some figures. 

Equations of Vibration and the Solution 

Figure 1 shows a circular cylindrical shell elastically 
restrained by several axially spaced springs. With the axial 
length of the shell denoted by l, the radius of the neutral 
surface by a, the cylindrical coordinates (x, ip, z) are taken as 
shown in the figure. The equatins of free vibration of the shell 
based on the Goldenveizer-Novozhilov theory are written as 
[20,21] 

and those of the moment are 

dN* 
dx + 

dN 
-^+pho,2u = 0, 
adip 

+ phu2v = 0 , ~ + 
dx 

adip 

adip 

+ dx a^* 

+ -N,.+pho)2w = 
a 

0 (1) 

where p is the mass density, h is the wall thickness, and w is the 
angular frequency. The components of the shearing force are 
given by 

Qx--
dMx , AM. 

Qv-
3M„ dMri 

(2) 
dx ' adtp ' ^v adip dx 

and the Kelvin-Kirchoff membrane force and shearing force, 
respectively, are 

RX=NXV + 
1 

Mr, 
a "r adtp 

The components of the membrane force are given by 

( du v ( dv \~) 

r 1 / dv \ du -) 

I a \ dtp / dx J 

(3) 

N. 

r d\j/ v ( dv d2w\~) 

r 1 / dv d2w \ Si/O 

la1\~d^ + ~V~/ + "lk J 
_ K(\-v) /dv d^\ 

a \dx dip/ 

M.„ = 

-M., (5) 

in terms of the displacements u, v, w in the axial, cir
cumferential, and radial directions, respectively, and the slope 
of the displacement w expressed as \l/ = dw/dx. The quantities 
D and K, respectively, are the extensional and flexural 
rigidities expressed as D=Eh/(\-v2), K=Ehi/\2{\ - v2) in 
terms of Young's modulus E, Poisson's ratio v and the wall 
thickness. For the free vibration of the shell, one may take 

(u,w) = h(u,w)cosnip, v = hvsintiip, \j/= — tj/cosntp, 
a 

K 
{NX,NV,QX,SX) = — (Nx,Nv,Qx,Sx)cosn<p, 

K 
Wr*. . ^ x , Qv ,Rx) = ~j (Nxv ,N*X. Qv ,RX) sinmp, 

K - -
(MX,MV) = - (MX,M )cosn<p, 

a 

K -
(MXie,M9x) = (M^,Af^)sinnvs (6) 

where the quantities u, v, . . . marked with an overscore are 
the respective dimensionless variables. For simplicity of the 
analysis, the following dimensionless parameters are also 
introduced: 

{ * (f,A>A(W, X - ^ 
( a D 

(7) 

Upon eliminating Nf, Nxv, Nvx, Qx, Qv, Mv, Mxv, and 
Myx from (l)-(5), the equations of vibration can be written as 
the matrix differential equation, 
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" 3 4 

" 5 1 

u62 

= 1, uA3=n2v, «4 5= - l / / j , 

= - w54 = 6«2(1 - *<)/(l + 3 /P) /A, 

= -12/2(1 -v2)(\+n2h2/\2)/h, 

ua = 12{( l -e 2 ) ( l+r t 4 / i : 7l2) -A 2 ] / /2 , 

«72 = 12{«2( l-»-2)( l+A2 /12)-X2J/A, 

M81 = - 1 2 { « 2 ( l - v ) / 2 ( l + 3 / A 2 ) - X 2 l / ^ 

Equation (8) can be written as 

^ 
l z«) [= l [ t f lU«)) 

(9) 

(10) 

by use of the state vector Jz(£)) = [uvw\pMxSxRx-Nx}
T 

and the coefficient matrix I [U\ given in (8). The state vector 
(z(£)j can be expressed as (z(£)) = [r(ij)] (z(0)) by using the 
transfer matrix [T(£)] of the shell, and the substitution of the 
expression into (10) yields 

^zlT(&\ = i[U][T(&\ (ID 

The matrix [7(f)] is determined by the power series solution to 
(11) as follows: 

[T{Ql -e,[U]^[I]+~im+^[U]2?^ + (12) 

The convergent values of the transfer matrix can be obtained 
by numerical calculation with quadruple precision on a digital 
computer. 

Frequency Equation 

Along a circle locating at £ = £, where the shell is supported 
by a spring, we have the relation expressed as 

Fig. 2 Eigenvalues of vibration of a free-clamped and a simply sup
ported cylindrical shell versus the circumferential wave number: v = 0.3, 
f = 3 , fi = 0.03, J = 4 (free-clamped), J = 3 (simply supported), kx 
= <L=k" =5 

lZj+l{ij+0))=[Pj]lZjttj-0)} 

by using the point matrix 
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Fig. 3 Eigenvalues of vibration and mode shapes of a free-clamped 
cylindrical shell elastically restrained by axially equispaced springs: 
.. = 0.3, 1 = 3, fi = 0.03, J = 4, kx=k~=kz=5, u, v, 

vv 
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- - - a2h 
\kx,kv,kz)j = ~~j7~ (kx,kv,kz)j (14) 

where kxj, kvJ, and kzJ are the axial, circumferential, and 
radial stiffnesses, respectively, of the spring. At an arbitrary 
circle, the state vector of the shell is expressed as 

j-i 

[Zjim^iTjmYliPiWAhmztm 

= [7)(0](z,(0)) (£,_,<£<£,-) (15) 

The present method can be applied to cylindrical shells 
under any combination of boundary conditions. Here, two 
examples will be explained. 

Example 1: A free-clamped cylindrical shell. For a shell 
with a free and a clamped edge, the boundary conditions are 
written as 

u = v = w = Q, \p = 0 at x = 0 

Nx = Rx = Sx=0, Mx = 0 at x = l (16) 

The substitution of (15) into (16) yields the frequency 
equation 
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with only the elements of [7(1)] necessary for the calculation. 
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Fig. 4 Eigenvalues of vibration of a free-clamped cylindrical shell 
versus the stiffness parameter of springs: c = 0.3, 1 = 3, h = 0.03, J = 4, 
m = 1 

Since [U] and [T($-j\ depend on the frequency parameter X, 
[71(1)] is also a function of X. The natural frequencies of the 
shell are determined by calculating the eigenvalues X of (17), 
and the mode shapes of vibration are determined by 
calculating the eigenvectors corresponding to the eigenvalues. 

Example 2: A simply supported cylindrical shell. For a 
shell simply supported (by shear diaphragms [1]) at both 
edges, the boundary conditions are 

v = w = 0, Nx=0, Mx = 0 at x = 0, and £ (18) 

and therefore the frequency equation is expressed as 

r* 
r « TV 

7\, 

T., (1) 

> = 0 

(0) 

(19) 

Numerical Calculation and Discussion 

In this section, the eigenvalues of vibration X and the mode 
shapes are calculated numerically by applying the method for 
circular cylindrical shells elastically restrained by axially 
equispaced springs of the same stiffness. 

Figure 2 shows the eigenvalues versus the circumferential 
wave number n for a free-clamped shell (solid lines) and a 
simply supported shell (broken lines). The eigenvalues change 
with the variation of the number n, and the minimum values 
appears in the case of m = 1 and n = 2 or 3, where m denotes 
the axial wave number. Although the eigenvalues of a simply 
supported shell are larger than those of a free-clamped one, 
the variation of them is similar to each other. 

Figure 3 shows the mode shapes of the free-clamped shell 
presented in Fig. 2 for the circumferential wave number n = 0, 
1, and 3, where the radial, circumferential, and axial 
displacements are shown by solid lines, chain lines, and 
broken lines, respectively. The maximum radial displacement 
is taken to have unit value at the free edge or at the loop 
causing the maximum displacement except for the case of 

J 
Fig. 5 Eigenvalues of vibration of a free-clamped cylindrical shell 
versus the number of springs: p = 0.3, / = 3, ft =0.03, kx =k^ =kz =5, 
m = 1 
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m = 1, n = 0, in which the axial displacement is extremely 
larger than the radial one. The vibration of « = 0 is an 
axisymmetrical one. With an increase of the circumferential 
wave number n, the mode shapes come to be similar to those 
of a cantilever beam. 

Figure 4 _ shows the eigenvalues versus the stiffness 
parameters kx = kip = kz of springs for the axial wave number 
m = \. The values marked with a small circle on the ordinate 
represent the eigenvalues of a cylindrical shell without 
springs. With an increase of the stiffness parameters, the 
eigenvalues become larger monotonically, although the in
creasing rate is different depending on the number n. 

Figure 5 shows the eigenvalues versus the number / of 
springs for m = \. The values marked with a circle on the 
ordinate are the same as those presented in Fig. 4. With an 
increase in number / , the eigenvalues also monotonically 
increase. 

The numerical calculations presented here were carried out 
on an HIT AC M-200H computer of the Hokkaido University 
Computing Center. 
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Limit Plasticity Approach to Piping 
in Bins 
The plastic limit analysis method is adopted to derive a criterion for piping in 
particulate solids discharged from prismatic and cylindrical bins. Plane, rec
tangular, and circular cross sections of empty channels (pipes) are considered. 
Utilizing the kinematic approach, various mechanisms of failure of the material 
surrounding an empty channel are discussed. The geometry of a stable channel is 
related to the material strength parameters c and </>, specific weight y, and geometry 
of the bin; safe estimate to the piping criterion is given. 

Introduction 
This paper deals with stability of vertical empty channels or 

pipes, forming within particulate solids during discharge from 
bins. Accordingly, the term piping is used to describe the 
formation of a stable empty channel. 

The phenomenon of piping occurs in plug-flow bins, where 
a particulate solid exhibits sufficiently high strength to 
withstand the stresses produced by its weight in a vertical 
slope surrounding an empty channel [1-4]. If the Mohr-
Coulomb strength criterion is assumed, two material 
parameters, the angle of internal friction $, an the cohesion c, 
define the strength of the material; and unsupported vertical 
slope can form only if c>0. Although variation of c and <f> 
with the depth of bin can be implemented in the analysis 
presented in the paper, it is assumed throughout that both 
parameters are constant. 

To evaluate stresses around a vertical channel in cylindrical 
slopes, Jenike and Yen [5] assumed a rigid perfectly plastic 
model for the particulate material. Using equilibrium 
equations, the Mohr —Coulomb strength criterion, and 
utilizing the method of characteristics [6], Jenike and Yen 
arrived at a formula for the diameter of a stable pipe as a 
function of c and <f>. As a criterion for stability, a bounded 
stress characteristic field was assumed. 

In the present paper, another approximate approach is 
suggested, based on the limit plasticity method. Examples of 
application of limit analysis for determination of wall 
pressures in bins are given in [7]. 

Limit Analysis Method 

The method of limit analysis is based on the concept of 
perfectly plastic material, obeying a flow rule associated with 
the yield condition [8], for which the lower and upper bounds 
to the true collapse load can rigorously be proven [8-10]. 
Numerous experiments performed on cohesionless and 
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cohesive soils indicate that the associated flow rule does not 
accurately describe the deformation of the material. 
Nonassociated flow rules have been proposed (cf [8, 13-15]), 
but in these formulations useful upper and lower limit 
analysis theorems cannot be proven. However, materials 
obeying nonassociated flow rules cannot be stronger than one 
with an associated rule [7]. Thus, the upper limit load for a 
material with the associated flow rule is also an upper bound 
to the true load for a particulate solid. 

For the considered problem, the collapse load is identified 
with the material specific weight 7, or, for a given specific 
weight, the dimensions of a surrounding channel slope at 
collapse can be found. If the formation of a stable channel 
within a particulate solid occupying a bin is regarded as 
undesirable when operating bins, then a safe estimate of the 
true geometry of the channel at collapse may be found from 
the upper bound solution, by examining kinematically ad
missible velocity fields. In fact, if the channel of height 
determined from a kinematically admissible field will 
collapse, the height corresponding to the true solution cannot 
be greater. 

Plane and Rectangular Bins 

The term rectangular bin is used to describe a container 
with four vertical flat walls and rectangular cross section of 
half width B and half length L. The outlet in the flat bottom is 
also rectangular, and usually extends throughout the bin 
length. If the length of a rectangular bin is appreciably greater 
than its width, the bin is called plane. It is assumed that in 
both types of bins a vertical empty channel may form with 
rectangular cross section of half width w and half length 
s^L. 

Plane Failure. Consider first a plane bin in which the 
mechanism of failure of a vertical slope extends throughout 
the whole length L. It may be assumed, then, that plane-strain 
conditions prevail. Two simple mechanisms of kinematically 
admissible field of failure, namely sliding and rotation (see 
Figs. 1(a) and (b)) are considered. For the first mechanism, 
the relationship between the geometry of the failing portion of 
the slope and the material parameters is 
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Fig. 1 Mechanisms of failure in a plane and rectangular bin 

c ft sin/3 cos(|8 + <j>) 

~y~H~ H 2cos4> 

Rigid rotation, with angular velocity Q, of a material obeying 
the associated flow rule is admissible providing the velocity 
discontinuity line is a log spiral, with velocity jump increasing 
exponentially. The resulting expression for c/Y-f/becomes 

c h cos(03 - 0) 

where 

K{ = 

K2 = 

K3 = 

K, = 

yH H sin(03-0,)cos/3 

COS0 

/K2-K3-K4\ (2) 

2tan<£ 

[e393tan*(3tan4>cos03 3(9tan2</>+l)' 

+ sin03) - e3"i tan*(3tan0cos0, + sin0,)], 

sin30, / 1 1 \ 

6 Vsin20! sin2 02 ' 

-cos303(tan03 - tan0 2 ) , (3) 

and the angles 6X,62, and 03 are defined as 

0, =<A + 5, 0 2 = 0 , + e , 03 = f? !+w, (4) 

with 

. sin0iSincjsin|3 , „ 
e = tan" ' ! , (5) 

cos(co + 0i - /3) — cos0! sinusin/8 
and u resulting from 

e"tan* [cosu - tan(5 + <j>- 0)sinco] = 1. 

Both mechanisms of failure are well known in the soil slope 
stability problem. However, the critical height of a failing soil 
slope is obtained using the fact that it extends horizontally 
without limit. In the case of a bin, the slope is bounded by the 
width of bin. 

Prismatic Failure. If the length L of a bin is comparable 
with the width B, plane failure cannot be assumed. A 

kinematically admissible mechanism is suggested consisting of 
rigid sliding of a trapezoidal prism, Fig. 1(c). The side walls 
and the bottom wall are the velocity discontinuity surfaces, 
inclined to the velocity vector V at the angle (j>. The in
tersection of the side walls with the upper surface of the slope 
makes the angle a, given by 

sina = 

and the ratio c/yHis 

c 1 

sin^ 

sin(/3 + </>)' 

cos()3 + </>) 

where 

yH H (M, +M2) cos<f> 

M, = ( 5 - 0 — 

(7) 

(8) 

sina 

M2 = (s + t) 
h 

cos/3' 

1 
:h

2{t + 2s)icm.$, 

s = foana tan/3+/. (9) 

The preceding mechanism was suggested for failure of buried 
plates anchoring-retaining walls in [12], with erroneous ex
pression for a. It may apply to rectangular bins with the 
length of the outlet smaller than the length of the bin. 

(1) Circular and Square Bins 

In cylindrical bins with circular outlets, and in prismatic 
bins with square outlets, the horizontal cross section of the 
empty channel is usually circular. The following analysis is 
limited, therefore, to cylindrical channels only. 

Axisymmetric Failure. Axisymmetric mode of failure 
requires the velocities V of particles to be directed toward the 
vertical axis of symmetry z. Circumferential strain rates 
ee = V/r^O do not allow for development of a conical velocity 
discontinuity surface with constant velocity jump. Thus, rigid 
motion mechanism of failure is not admissible. Instead, a 
continuous, axisymmetric velocity field V= V(r,z) is 
postulated. To find an axisymmetric velocity field for a 
dilatant material is difficult, because the volumetric strain-
rate rule contains an unknown scalar factor X^O. The 
problem simplifies if the material is incompressible, and 
equation ir + ie + ez=0 is available. Incompressibility is 
enforced if the angle of internal friction is zero. An example 
of an axisymmetric velocity field for incompressible material, 
and the resulting dimensions of a failing slope, are given in the 
following. 

It is assumed that the velocity field V= V(r,z) is bounded 
by a cylindrical region R{ <r<R0 and z>0 (Fig. 2(a)), with 
Vr=Vz = 0 at the boundaries. The boundary conditions and 
incompressibility of the material are fulfilled if the velocity 
field is postulated as 

Vr = 

V7 

-A(r-R0)
2z, 

' • [ 2 ( r - / J 0 ) -
(r~R0)

2 

]• (10) 
2 L - r 

(6) for 7 - ^ ^ 0 , 2 ^ 0 , where A is an arbitrary positive constant of 
dimension 1/sec cm2. A realistic mechanism of failure is 
obtained if the inner radius of the empty channel R{ = Rt = 
R0/3'/2. The total rate of energy dissipation, obtained by 
integration of specific rate of energy over the failing region is 

D = 2irc\ (.ii-e2-e3)r dr dz, (11) 
J R] JO 

where 
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[*=? 
Anr-R0)

2z 

ZHr-R0f (5 - $ ) 2 + Z- (3 - ^ ) 2 - * (3 - ^ . ) ( , - * „ ) 2
 + ( , - * 0 ) < 

: e « = - - 4 
(r-R0)

2Z 
(12) 

Because analytic integration of (12) is complicated by the 
terms within the square root, numerical integration giving 
f(R\ ,R(i,h) is recommended, and 

c _ VR,(R{-R0)
2 

yH 6Hf(RuR0,h) ' 

Other velocity fields for a frictionless material were recently 
considered in [16]. 

Partial Failure. Partial failure mechanism of an 
axisymmetric slope is probably more realistic than fully 
axisymmetric one. It also offers the possibility to derive the 
stability criterion for a material with internal friction. Ac
cordingly, the mechanism similar to that for rectangular bin is 
assumed (Fig. 2(b)). The expression for c/yHai collapse is: 

c 1 (Li-L2) cos(j3 + 4>) — = L J II ^L-ll (14) 
yH H ( M , + M 3 ) cos<£ 

where Mx, L,, and 5 are given by (9) and 

M, (s + t) V l + c o t ^ r ^ c o s - ' f — -jR^-s2) 
cosp L \R, / 

']•' 
1 

hRi2(ix-smiJ.) 

+ - tan/3 
3 '2 

IR^^cos^-siSRS-s2) 

ft = 2sin" 
* i 

(15) 

Criterion for piping 

As a criterion for piping for a given bin, a relationship 
between the geometry of a stable channel and the material 
parameters is postulated. In the adopted kinematic approach 
the greatest ratio c/yH, corresponding to a given width w or 
radius Rt of the channel, defines the maximum height of the 
stable pipe. Because of complexity of some of the derived 

H 

• 

h 

oL" 

• v ; 

"" ' ! 

a) 

r 

. 

H 

r 

h 

b t | 

i 
I ' 

Fig. 2 Axisymmetric and partial failure in a circular bin 
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Fig. 3 Regions of stable and unstable empty channel in a plane bin 
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UNSTABLE 

STABLE 

Fig. 4 Regions of stable and unstable empty channel in a rectangular 
bin 

<P=A0 

UNSTABLE 

Fig. 5 Regions of stable and unstable empty channel in a cylindrical 
bin, partial failure 

relations, the maxima of the ratio c/yH were found 
numerically, and the results presented graphically. In Fig. 3 
the results for plane bin are shown. Solid lines correspond to 
the rotational mechanism, dotted lines to rigid sliding. The 
regions inside the lines define unstable channels; outside the 
lines the channel may not fail. Figure 4 applies to rectangular 
bins with outlet extending over the whole length. Two dif
ferent ratios of the bin cross section L/B = 1,5 were selected. 
The results for cylindrical bin and partial failure mechanism 
are depicted in Fig. 5. The dotted line for </> = 0 pertains to the 
square bin with a square outlet inscribed within a circle of the 
radius Rx. Regions of stable and unstable channels for the 

axisymmetric failure are shown in Fig. 6. For comparison, the 
results for circular bin and partial failure are drawn as dotted 
lines. 

Discussion 

From the diagrams presented in the preceding section, the 
width or radius of a stable or unstable channel can be 
determined, if the material parameters c and </>, specific 
weight 7, and height H of the solid in the bin are known. 
Assuming that the dimension of the channel cannot be smaller 
than the dimension of the outlet, the geometry of the outlet 
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10 

Fig. 6 Regions of stable and unstable empty channel in a cylindrical 
bin, axisymmetric failure 

preventing piping can be found. Generally, an increase of </> 
reduces the region of instability. In other words, internal 
friction increases risk of piping. However, the primary factor 
responsible for piping is the cohesion c; for c = 0 piping 
cannot occur. In circular or square bins,small outlets may lead 
to piping even for very small cohesion. For 0 = 0 the dif
ference between the axisymmetric and partial failure is small. 
In all cases, a critical ratio c/yH exists, above which a stable 
channel may form for any dimension of the outlet. This 
critical ratio is much higher for plane or rectangular bins (note 
the difference in the horizontal scale). 

It should be remembered, however, that the kinematic 
approach adopted yields only a bound to the true criterion of 
piping. Other mechanisms of failure may lead to larger 
regions of instability. Within the framework of limit analysis 
any hypothetical mechanism may be suggested, provided its 
kinematical admissibility is satisfied. Nonetheless, the actual 
geometry of stable channels cannot be smaller than that 
resulting from the considered kinematic fields. Thus, the 
regions denoted in Figs. 3-5 give safe estimates of the 
geometry of unstable channels. 

Although piping in bins is reported in the literature, and 
taken into account in the design of bins [1-4], the author has 
been unable to collect quantitative experimental data relevant 
for comparison with the theoretical solution. In experimental 
work on flow of particulate solids through bins and hoppers 
cohesionless materials are favored over cohesive ones. 

Finally, it is interesting to compare the present solutions for 
cylindrical bins with the solution given by Jenike and Yen [5]. 
The latter applies to tall bins, where stresses do not vary with 
depth. The criterion for piping can be written as 

S -F(4>), 
c 2 

(16) 

where F{<t>) is given in [5] in a graphical form, and does not 
depend on H (see Fig. 9 in [5]). Assuming partial failure, 
R2/H and Rx/H close to zero, the function F{<j>). for the 
present approach was calculated. The results plotted in Fig. 7 

UNSTABLE 

JENIKE 
& YEN 

PRESENT 
SOLUTION 

STABLE 

40° 
4> 

0 20° 

Fig. 7 Regions of stable and unstable empty channel in a tall cylin
drical bin 

indicate an essential discrepancy. The solution suggested in [5] 
is available for <t>^ 19.5 deg, whereas in the kinematic ap
proach no limitation applies to <j>. For higher values of 4> the 
present solution gives much lower ratio Rxy/c for collapse, 
i.e., smaller outlets. 

The reason for the discrepancy in the solutions may be 
explained as follows. The static solution presented in [5] 
would give a lower bound to the radius Rx of the channel at 
collapse providing the solution be statically admissible. 
However, the boundary conditions at the bin walls are not 
included in the analysis-the slope is treated as infinitely 
extending - and static admissibility cannot be claimed. 

Acknowledgment 

The author is indebted to Dr. H. Haitjema for suggesting 
partial failure in cylindrical bins. The work reported in this 
paper has been partly supported by a grant from the 
University of Minnesota Graduate School. 

References 

1 Jenike, A. W., "Gravity Flow of Bulk Solids, "Bulletin No. 108, Utah 
Eng. Exp. St., Univ. of Utah, 1961. 

2 Jenike, A. W., "Storage and Flow of Solids," Bulletin No. 123, Utah 
Eng. Exp. St., Univ. of Utah, 1976. 

3 Johanson, J. R., "Effect of Initial Pressures on Flowability of Bins," 
ASME Journal ofEngineering for Industry, Vol. 95, 1969, pp. 395-399. 

4 Giunta, J. S., "Flow Patterns of Granular Materials in Flat-Bottom 
Bins," ASME Journal ofEngineering for Industry, Vol. 95,1969, pp. 406-413. 

5 Jenike, A. W., and Yen, B. C , "Slope Stability in Axial Symmetry," 
Proc. 5th Symp. Rock Mech., Univ. of Minnesota, 1962, pp. 689-710. 

6 Sokolovski, V. V., Statics of Soil Media, Butterworths, London 1960. 
7 Mroz, Z., and Drescher, A., "Limit Plasticity Approach to Some Cases 

of Flow of Bulk Solids," ASME Journal of Engineering for Industry, Vol. 95, 
1969, pp. 357-364. 

8 Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, 
Oxford, 1956. 

9 Drucker, D. C , and Prager, W., "Soil Mechanics and Plastic Analysis or 
Limit Design," Quart./Ipp/. Math., Vol. 10, 1954, pp. 157-165. 

10 Chen, W. F., "Soil Mechanics and Theorems of Limit Analysis," J. Soil 
Mech. Found. Div. Proc. ASCE, Vol. 95, 1969, pp. 493-518. 

11 Chen, W. F., Limit Analysis and Soil Plasticity, Elsevier, Amsterdam, 
1975. 

12 Izbicki, R. J., and Mroz, Z., Limit Analysis Methods in Rock and Soil 
Mechanics (in Polish), PWN, Warsaw, 1976. 

13 Jenike, A. W., and Shield, R. T., "On the Plastic Flow of Coulomb 
Solids Beyond Original Failure, ASME JOURNAL OF APPLIED MECHANICS, Vol. 
27, 1959, pp.599-602. 

14 Radenkovic, D., Theorie de Charge Limites, Extension a la Mechanique 
de Sols, Ecole Polytechnique, Paris 1961. 

15 Mroz, Z., Nonassociated Flow Rules in Description of Plastic Flow of 
Granular Materials, CISM Udine, 1974. 

16 Britto, A. M., and Kusakabe, O., "Stability of Unsupported Axisym
metric Excavations in Soft Clay, Geotechnique, Vol. 32, 1982, pp. 261-270. 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/553 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E. H. Lee 
Life Fellow ASME 

R. L. Mallett 
Mem. ASME 

Department of Mechanical 
Engineering and Aeronautical 
Engineering and Mechanics, 

Rensselaer Polytechnic Institute, 
Troy, N.Y. 12181 

T. B. Wertheimer 
MARC Analysis Research Corp., 

Palo Alto, Calif. 

Stress Analysis for Anisotropic 
Hardening in Finite-Deformation 
Plasticity 
Kinematic hardening represents the anisotropic component of strain hardening by a 
shift of the center of the yield surf ace in stress space. The current approach in stress 
analysis at finite deformation includes rotational effects by using the Jaumann 
derivatives of the shift and stress tensors. This procedure generates the unexpected 
result that oscillatory shear stress is predicted for monotonically increasing simple 
shear strain. A theory is proposed that calls for a modified Jaumann derivative 
based on the spin of specific material directions associated with the kinematic 
hardening. This eliminates the spurious oscillation. General anisotropic hardening 
is shown to require a similar approach. 

1 Introduction 

In an intriguing paper [1], Nagtegaal and de Jong evaluated 
the stresses generated by simple shear to large deformation in 
elastic-plastic and rigid-plastic materials that exhibit 
anisotropic hardening. In comformity with current practice 
for finite deformation in the case of kinematic hardening, 
they used an evolution equation for the back stress or shift 
tensor a (the current center of the yield surface) which relates 
the Jaumann derivative of a to the plastic strain rate. This 
incorporates aspects of finite deformation and ensures ob
jectivity of the evolution equation under rigid-body rotations. 
For a material that strain hardens monotonically in tension, 
they obtained the unexpected result that the shear traction 
grows to a maximum value at a shear strain y of the order 
unity and then oscillates with a period of about six as the 
strain increases. 

Study of the analytical structure of the kinematic hardening 
law shows that, in the case of simple shear, the use of the 
conventional Jaumann derivative causes the shift tensor a to 
rotate continuously and this generates oscillations in the stress 
field. However, the back stress a is a residual stress generated 
by deformation of the heterogeneous structure of crystallites 
and hence is embedded in the material. Thus for simple shear, 
the total angular rotation of a must be limited since in simple 
shear, as pointed out in the following section, no lines of 
material elements ever rotate by more than -K radians. A 
modified theory is presented which eliminates this anomaly 
and yields a monotonically increasing shear traction for the 
problem under discussion. 
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2 The Kinematics of Simple Shear 

Using rectangular Cartesian coordinates for the con
figuration at time /, a simple shear in the xx direction is 
defined, as depicted in Fig. 1, with displacements 

U\=ktX2, « 2 = « 3 = 0 . (1) 

The corresponding velocity field is 
v{=kx2, v2 = v3=0 (2) 

having the velocity gradient tensor L with symmetric part D, 
the rate of deformation, and antisymmetric part W, the spin. 

L = 
dVj 

dXj 

D = 

0 A: 0 

0 0 0 

0 0 0 

0 k/2 0 

k/2 0 0 

0 0 0 

w = 

0 k/2 0 

-k/2 0 0 

0 0 0 

(3) 

Fig. 1 Simple shear in the x1 direction 
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The velocity field is thus steady with constant rate of shear 
strain y = k and constant spin W with angular speed k/2. 

Because the velocity field is linear in x, straight material 
lines remain straight and, for example, the initially square 
figure illustrated in Fig. 1 is deformed into a sequence of 
parallelograms. The velocity gradient is uniform over the 
body so that the angular velocity of any line of particles in the 
(*i, x2) plane depends only on its current orientation angle 8 
(see Fig. 1) and is given by 

6=-ksm2e (4) 

It is evident that the line of particles initially on 0A0 in Fig. 1 
approaches the *, axis as t — <». Moreover, the largest total 
rotation of any line of particles is less than IT, this bound 
corresponding to the initial inclination 0O = ir - e, 0 < e ~ 
0. 

Note that the anglular velocity of the material lines 6 = ir/4 
or 37r/4, which coincide instantaneously with the principal 
directions of the deformation rate tensor D, is k/2, equal to 
the spin as it should be. This is also the average of the angular 
velocities over all directions in the current configuration. 

Kinematic-Hardening 3 The Currently Adopted 
Analysis for Finite Strain 

The back stress a, which prescribes the position of the 
center of the yield surface in stress space, provides the 
asymmetry in the yield function between continued and 
reversed loading needed to incorporate such phenomena as 
the Bauschinger effect. 

For combined kinematic-isotropic hardening [2] with the 
isotropic-hardening stress measure satisfying a Mises type 
yield condition, the yield function takes the form 

(Sjj - ay) (S,y - «y ) = (s - a):(s - a) 

= ( s - a ) . ( s - a ) = 2og(e")/3 (5) 

where ( ):( ) denotes the trace of the matrix product and 
( )•( ) the dot product in nine-dimensional stress space (it is 
helpful to keep in mind both of these representations). The 
matrix or vector s is the stress deviator and a0 is the tensile 
value of the isotropic part of the yield stress. The latter 
depends on the history of plastic deformation as expressed 
through the generalized plastic strain scalar if given by the 
growth law 

(6) r"=V2D p :D p /3 

where Dp is the plastic strain rate. 
The growth of the anistropic part of the yield stress in 

kinematic hardening is given by the evolution equation for the 
internal variable a 

a = i - W f f + a W = C(Ef)D" (7) 

where, for finite-deformation applications, the Jaumann 
derivative a is commonly chosen to replace the material 
derivative a used in infinitesimal displacement theory. This 
ensures that (7) is objective under superposed time-dependent 
rigid body rotations. 

Large shear strains y = kt of the order 10 are considered so 
that elastic strains can be neglected and rigid-plastic theory 
adopted. Thus the plastic strain rate equals the total strain 
rate defined in (3) 

D " = D . (8) 
The normality condition associated with the yield function 

(5) determines the flow rule 

D" oc ( s - a ) . (9) 

Thus with Dp prescribed by (8) and (3), e" (t) can be deter
mined by integrating (6), and a(t) by integrating (7) from the 
initial condition a(0) = 0. Equations (9) and (5) then 
determine ( s - a ) , so that s(t) can be evaluated. 
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Fig. 3 Normal stress variation 

Such an evaluation was presented in [1] and both it and the 
corresponding elastic-plastic solution resulted in oscillatory 
stresses. The rigid-plastic case corresponding to purely 
kinematic hardening (cx0 constant) and linear hardening in 
tension (constant tangent modulus 3C/2) can be evaluated 
analytically, as pointed out to us by Y. F. Dafalias, to give 
shear stress 

T = s12 = ff0/V3 + (Csin 7)/2, y = kt (10) 

and the nonzero normal stress deviator components 

su = -s22 = C(l-cos y)/2. (11) 

For comparison with the results of a modified theory, these 
stress variations are shown by the oscillatory curves in Figs. 2 
and 3, respectively. The oscillations arise since the spin terms 
in (7) generate a tensor a which rotates with angular velocity 
k/2 and, because of (5) with constant a0, this causes the 
components of a and hence of s to oscillate with angular 
frequency k, and thus with period 2ir in y = kt. 

4 A Modified Constitutive Relation 

Constitutive relations for anisotropic hardening were 
initially developed for infinitesimal displacement theory, so 
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that, for example, the evolution law (7) for a was expressed in 
[2] as 

a=C(e?W (12) 

where the superimposed dot denotes the material derivative 
with the time differentiation performed with respect to axes 
fixed in space. The term on the right-hand side of (12) ex
presses the influence on the growth of a of the plastic flow 
currently taking place. However, the effect of the rotation of 
a due to the deformation of the material in which the back 
stress is embedded also contributions to the change of a, but 
this component is neglected in infinitesimal displacement 
theory in which rotation terms are consistently neglected 
compared with strain terms. It was pointed out by Rice [3] 
that, when the tangent modulus is of the order of the stress, 
such an approximation is not justified, even at small strains, 
and this is often the case in elastic-plastic theory. Thus, for 
finite deformation, and possibly even for small deformation, 
the effect of the rotation of the back stress generated by 
previous plastic flow must be added to the contribution of the 
plastic flow currently taking place and thus to the right-hand 
side of (12). 

It should perhaps be pointed out that more elaborate laws 
than (12) were developed with the same kinematic restriction 
of neglecting the change in a due to its rotation, and these can 
be written [1] 

uu=LUklDt, (13) 

in terms of the shift operator L which could depend on s, a, 
V, and other internal variables determined by the history of 
deformation. These laws were devised to obtain better 
agreement with experimental measurements, particularly 
those involving unloading and reversed loading, but obviously 
made no contribution toward improving the neglect of the 
rotation influence. Since both laws (12) and (13) are in
cremental in form, relating increments or rates of a and 
strain, they could be applied at any instant during the 
deformation history since the required rate variables already 
occur there. 

As mentioned in the Introduction, the back stress a. is 
embedded in the material as residual stresses generated due to 
the heterogeneous structure of anisotropic crystallites forming 
the polycrystalline material. Alternatively this influene can be 
thought of in terms of dislocations piled up against grain 
boundaries, or other analogous micromechanisms, the 
mobility of which depends on the strain rate tensor imposed, 
both with regard to the asymmetry between continued and 
reversed straining and to the direction of straining in the 
material. A study of the micromechanics of the situation, 
either at the crystallite level, the dislocation level, or at both, 
may be needed to fully understand this question, but such 
seems not now to be available. However, information can be 
gleaned from the macroscopic theory. In particular, the 
principal component of a having the largest absolute 
magnitude produces the major influence on the yield surface 
and hence on the stress field and is carried in the lines of 
material elements oriented in the corresponding eigenvector 
direction. Thus rotation of these lines of material elements 
may be considered to incorporate the major rotational in
fluence of the back stress generated by previous plastic flow. 

In the case of simple shear, the principal component a33 is 
zero and since a is a deviator tensor, the other two are equal in 
magnitude and opposite in sign. Thus the choice of the 
eigenvalue of largest absolute magnitude is not unique and 
one must therefore look further into the evolution of a. In the 
case of kinematic hardening according to (7) or (12), a 
initially grows parallel to YV with the tensile eigenvector at 6 
= ?r/4 and the compressive one at 8 = 3ir/4. Increments 
parallel to D'' are being continually added and for the tensile 
direction the line of elements that carries the back stress 

rotates toward the xx axis with angular velocity k/2 initially 
and thereafter with ever decreasing speed as is evident from 
(4). In contrast, material lines instantaneously coincident with 
the compressive eigenvector initially rotate with increasing 
angular velocity as they approach the x2 axis. The increasingly 
larger angle that the rotated eigenvector makes with the 
corresponding tensor increments continuously being added 
(due to the CDP term) inhibits the growth of the compressive 
eigenvector compared with the tensile one. For example, in 
simple tension or compression the increments sum in fixed 
directions and generate the maximum kinematic hardening 
component (see Hill [6], p. 39 for comparison of tension and 
compression, with shear). 

Such considerations suggest that, in the case of simple 
shear, the rotation of lines of material elements along the 
tensile eigenvector of a play the major role in determining the 
influence on the evolution equation for a of the back stress 
caused by previous plastic flow. 

Rotation terms must thus be added to (12) yielding 

tt = C ( ? ) D ' + W * a - a W * (14) 

where the spin W* of the line of material elements considered 
to carry the back stress is given by the angular velocity (4). 

Comparing this with (7), the currently accepted evolution 
equation for kinematic hardening at finite deformation, 
shows that (7) is equivalent to assuming that the back stress 
already generated contributes to a according to rotation with 
constant angular speed k/2 (even though it is embedded in 
material no directed elements of which ever rotate by more 
than 7r radians). The nature of the connection between the 
elements in an elastic-plastic continuum and thus the stresses 
needed to generate such unlimited rotation of the embedded 
stress clearly rule out the validity of (7) for ductile metals. 

The structure of (14) suggests a modified interpretation by 
writing it in the form 

*a=ct-W*a+aW* = C(e») D" (15) 

where a defines a modified Jaumann derivative associated 
with the spin W* of lines of material elements carrying the 
major influence of the back stress a. It is shown in the Ap
pendix that a is objective. In fact it is shown that for a spin 
il(t) the modified Jaumann derivative 

a=a-Sla+ail (16) 

is objective if, under time-dependent rigid body rotation 
expressed by the rotation matrix Q(t), fi transforms as 

fi-QQ'+QfiQr (17) 

This expresses a simple geometrical requirement, namely that 
the time-dependent rotation Q ( 0 superimposed on the spin 
fi(0 adds the current superimposed spin tensor QQ ' to the 
spin fi transformed by the rotation that has taken place. This 
applies in the case where fi is the spin of lines of material 
elements in a deforming body. These matters are discussed in 
more detail in Section 7. 

5 Comparison of Solutions 

Equation (14) was integrated numerically with the initial 
condition a(0) = 0 and the result was substituted into (5) and 
(9) to give the stress variations shown in Figs. 2 and 3 for the 
shear and normal stresses an and au = -a22- Purely 
kinematic hardening was assumed with an initial yield stress Y 
= 207 MPa (30 ksi) and linear tensile hardening with modulus 
310 MPa (45 ksi). These values are appropriate to model an 
aluminum alloy. The rigid-plastic analysis used implies an 
incompressible medium and thus stresses are determined only 
to within an arbitrary hydrostatic pressure since it causes no 
deformation. This pressure was taken to be zero so that the 
stresses plotted are stress deviators. Figure 2 also includes the 
stress-strain relation in shear for isotropic hardening 
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corresponding to the same tensile behavior. No normal 
stresses are generated in this case. 

It is seen that all the stress-strain curves have a common 
tangent at zero strain. The two kinematic hardening solutions 
remain close to each other for strains up to about 0.5 but at 
larger strains the stresses predicted on the basis of the con
ventional Jaumann derivative oscillate while the approach 
suggested in this paper yields a monotonically increasing 
shear stress-strain curve, with a tangent modulus that 
decreases as the strain increases. 

The stress fields of the conventional approach and the 
suggested new one agree for small strains because the 
eigenvectors of Dp and a initially coincide so that W = W* as 
mentioned in Section 2. With increasing strain, the tensile 
eigenvector of the new solution approaches an asymptote at 6 
~ 15 deg. Thus the tensile strain rate in simple shear becomes 
inclined at some 30 deg to the direction in which the maximum 
tensile yield stress has been generated by induced anisotropy. 
This angle has been increasing and is consistent with the 
lessening of the tangent modulus. Such softening has been 
termed a rotational Bauschinger effect by Jonas [4]. The 
oscillations predicted by the solution based on the con
ventional Jaumann derivative are clearly due to the inap
propriate use of the spin W to express the influence of the 
back stress already generated (as discussed in the preceding 
section). 

Both [1] and the present paper analyzed purely kinematic 
hardening without a component of isotropic hardening in 
order to focus on the effects of anisotropy, although results 
based on isotropic hardening were presented for comparison. 
This led to a rather drastic difference in the stress variations 
given by the two approaches to the kinematic hardening case. 
A physically more appropriate representation for many 
materials would be isotropic hardening initially, later ac
companied by the growth of a kinematic component. When 
the conventional Jaumann derivative is used this would in
troduce an oscillatory component superimposed on a smooth 
monotonically increasing curve, so that initially a minor 
ripple with period 2ir would appear, insufficient to produce a 
zero tangent modulus. This could thus be observed without an 
instability developing. 

Recently torsion tests have been carried out to a shear strain 
of 7 on six different ductile metals (copper, brass, nickel, 
steel, and two types of iron) [5], Tests were carried out for a 
range of strain rates and the strain-rate influence was not so 
marked as to rule out adequate analysis on the basis of rate-
independent theory. In the low strain-rate isothermal range, 
monotonically increasing stress-strain curves were obtained 
except for an initial upper yield in the steel and one iron. No 
indication of a ripple or superimposed oscillation was evident. 
These results support the concept presented in this paper that 
the continued rotation of a predicted by the use of the con
ventional Jaumann derivative has no physical validity. 

6 Elastic-Plastic Stress Analysis 

Finite-element elastic-plastic computer programs are 
available for kinematic hardening and have been considered 
applicable for stress and deformation analysis at finite 
deformation since they use the (conventional) Jaumann 
derivative of stress to account for rotational effects. They 
were shown in [1] to predict stress oscillations in simple shear. 
In view of the rigid-plastic solutions discussed in the preceding 
section, use of the modified Jaumann derivative as in the 
evolution equation (15) can be expected to eliminate the 
spurious oscillations and provide a satisfactory analysis. Thus 
the computer codes now in use can be corrected simply by 
changing the time derivative adopted. 

Such a time derivative occurs not only in the evolution 
equation (15) but also in the plastic flow law where it operates 

on the stress deviator s and, for kinematic hardening, takes 
the form 

D*= ( s _ a ) K s _ a ) : s * ] ( 1 8 ) 
in (TQ 

where h is a strain hardening modulus (see [2] for the in
finitesimal displacement version). Summation of the elastic 
and plastic strain rates to give total strain rate yields 

D = D e + D ' \ (19) 

Since for elastic-plastic analysis (19) replaces (8), T>" is not 
prescribed by the kinematics so that (s — a) cannot be 
determined by (9) and (5) but instead must be determined by 
simultaneous integration of the evolution equation (7) or (15) 
and the flow law (18). 

A modified version of the MARC program was used for 
such an elastic-plastic analysis and the results fell within 1 
percent of the rigid-plastic solutions shown in Figs. 2 and 3. 
Since the elastic-plastic model does not represent an in
compressible material, the stress (not just the deviator) was 
evaluated. Because the velocity boundary conditions involve 
no volume change and the flow law (18) prescribes in
compressible plastic deformation, the elastic deformation 
should also be incompressible and hence the stress deviatoric. 
With aJ} zero, au and <x22

 w e r e found to be opposite in sign 
and equal in magnitude to within 0.1 percent. The close 
agreement of the finite-element solution may seem surprising 
in view of the severe element distortion at shear strains y = 10. 
However, it must be borne in mind that the velocity variation 
is linear which can be modeled exactly by the finite elements 
even when distorted. 

In an earlier report [7] on this topic a Jaumann-type 
derivative of stress based on the spin of the eigenvector triad 
of a was used in the flow law. Since only the part of the spin 
of a associated with material rotation needs to be eliminated 
from the stress-rate loading term, the Jaumann derivative I 
should have been adopted. Rotation of the anisotropic yield 
surface about the stress origin can be generated by plastic flow 
and this component must be associated with nonzero stress 
rate. This change in the analysis is very significant since only 
one rate definition now appears in the elastic-plastic theory 
which greatly simplifies numerical implementation. 

7 General Theory 

Consideration so far has been focused on simple shearing 
because of the unexpected oscillating shear stress results 
presented in [1]. However, the concepts involved can be 
generalized and applied to more complex problems. One can 
expect problems similar to those encountered in simple 
shearing to arise often in view of the frequent onset of shear 
localization or banding associated with plastic deformation 
which will involve a similar deformation-rotation coupling. 

A complete investigation of the micromechanics and the 
structures of possible macroscopic constitutive relations will 
no doubt be needed to fully understand this phenomenon and 
to generate a fully tested theory. However, the approach 
suggested in Section 4 does appear to embody the main 
essence of the phenomenon and can be generalized to three-
dimensional problems. 

For simple shear, the deformation (2) occurs in the (x,, x2) 
shearing plane so that the material elements carrying the back 
stress a must rotate about the axis x3 normal to the plane. 
Thus only a direction in the plane is needed to determine the 
associated spin. In three dimensions a component of spin 
around such a direction may also be needed. Since the main 
back-stress influence is embedded in the plane defined by the 
eigenvectors of a associated with the maximum and minimum 
eigenvalues, it is suggested that the spin W* should be 
determined by the angular velocity of the material-element 
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line instantaneously coincident with the eigenvector of a 
corresponding to the eigenvalue with maximum absolute 
value, with a spin component around this vector determined 
by rotation of the plane containing the material elements 
instantaneously coincident with both eigenvectors. 

The general theory of constitutive relations of the type 
considered here was developed by Onat and Fardshisheh [8] 
who showed that for objectivity of a relation between a, D, 
and W involving a tensor state variable a in addition to scalar 
state variables (which for simplicity will not be specifically 
indicated in the following representation) it must take the 
form 

o-=g(<r,a,D) + W<r-ffW (20) 

a = h((T,a,D) + W a - a W (21) 

where the functions g and h are isotropic tensor functions. It 
is common to combine the spin terms with the material-rate 
terms to obtain 

&=ff-Wff+ffW = g(ff,a,D) (22) 

a = «-Wa+ff lW = h(ir,a,D) (23) 

The conventional Jaumann derivative thus appears on the 
left-hand side of each equation. Since large strains are of 
interest, rigid-plastic theory will be considered to simplify the 
discussion and thus D = ~DP. 

Discussion will be focused on the evolution equation (15) 
with the understanding that similar consideration apply to the 
flow law (18). It was pointed out in Section 4 that equation 
(15) is objective and so it must be expressible in the form (21). 
This can be independently established by expressing W* in 
terms of Wand D. 

Consider an arbitrary unit vector n and a linear segment of 
material elements n ds. The relative velocity between the ends 
of n ds is 

(dVi/dXj)dXj = Ln ds (24) 

The component normal to n determines the spin W*of that 
segment to within an arbitrary spin about the segment. 
Making use of L = D + W and cancelling ds throughout 
gives 

(D + W ) n - [ n r ( D + W)n]n = W*n (25) 

The W term in the brackets reduces to zero because W is 
antisymmetric and introduction of nrn = 1 and factoring 
gives 

(W + Dnn r -nn r D)n = W*n 

so that a solution of (25) is the antisymmetric matrix 

W = W + D n n r - n n r D (26) 

and (14) has the form (21). W* can readily be shown to in
volve no spin around n introduced by the terms involving D. 

For simple shearing, W* is determined by the spin of a line 
of material elements instantaneously coincident with an 
eigenvector of a and (26) gives this rotation about the «33 axis. 
For general deformation it was suggested in the foregoing that 
W* be defined by the spin of material elements lying along 
one eigenvector direction, the spin around it being determined 
by the rotation of the plane determined by material elements 
along another eigenvector. Since the spins of both material 
lines are of the form (26) it is clear that the resulting spin will 
have the form W plus a function of D and hence will lead to a 
relation of the form (21). 

For simple shearing, equation (14) was integrated in the 
rigid-plastic case and (14) and (18) in the elastic-plastic case 
using W* from (4) and this permitted accurate numerical 
integration because the total rotation of a was less than 7r/4. 
Combining all the terms involving D together as in (20) and 
(21) separates out self-cancelling, oscillating terms that must 
then combine to yield a monotonic function. This may lead to 

increasing the inaccuracy in carrying out numerical in
tegration. However in more complicated problems where a 
simple relation such as (4) does not exist for W*, it may be 
important to separate out the W and D variables. Certainly 
for formulating the structure of the physical theory the 
resultant rotational effect of the back stress already 
generated, which is dependent on W*, is a significant and 
pregnant concept. 

As pointed out in Section 4, generalizations of the simple 
kinematic hardening law attempt to improve the operator L in 
(13) but do not address the effect of finite rotation of the a 
generated by previous plastic flow in contributing to d. It 
would thus be a forlorn hope that the more complicated 
models would remove the oscillating stress anomaly 
associated with use of W in place of W* in the evolution 
equation for a corresponding to (14). However, reference [1] 
deduces that the Mroz multisurface model and one involving 
an additional tensor variable do just that. Study of the laws 
and methods of evaluation used in [1] reveals that this con
clusion arises from shortcomings of the laws selected or the 
method of evaluation. 

The general evolution law used in [1] is 

& = p(m:D") (27) 

where m oc (s - a), and p is a tensor that takes on different 
forms for the three laws studied. In the case of simple 
shearing, (27) reduces to 

ixn=(pu/V3 + al2)k (28) 

a22 = (p22/\[3-al2)k (29) 

&i2 = foi2/V3 + ( a 2 2 - « „ ) / 2 ] * (30) 

The spin terms that generate the rotation of a and hence the 
oscillating stress are the al2 terms in (28) and (29). In simple 
shear the Bauschinger effect will certainly be most significant 
for reversed loading in shear, hence a12 will be a dominant 
component. Thus, in conformity with the physical theory 
developed in Section 4, one would expect oscillatory stress for 
all the laws since p expresses the infinitesimal strain model 
and is not influenced by the rotation. 

Study of the individual cases indicates why the anomaly was 
limited to the kinematic hardening model. The Mroz 
multisurface model, for example, was solved for the limit of 
an infinite number of closely adjacent surfaces for which the 
shift rate of each surface in stress space was proportional to a 
instead of a linear combination of a and (s - a) away from 
that limit. Thus the shift rate direction was independent of 
stress or D p , a most unlikely circumstance. Moreover, the a 
generated as each surface was activated was not accumulated, 
so that finally the isotropic hardening solution was 
reproduced - hardly compatible with the anisotropic hard
ening envisaged. These results therefore do not invalidate the 
physical concepts on which the theory developed in Section 4 
was built nor the error introduced by use of the conventional 
Jaumann derivative in (15) and (18). 

8 Discussion and Conclusions 

The modified Jaumann derivative (*), equation (15), has 
some similarity to the Jaumann-type derivative (" ) in
troduced by Dienes [10] which involves spin associated with 
the rotation determined by the polar decomposition theorem 
for the total deformation from the undisturbed configuration. 
The latter is thus appropriate in formulating the constitutive 
equation of a material for which the stress depends on the 
total deformation, for example elasticity when it is expressed 
in differentiated hypoelastic form. The cla^-n that (" ) is also 
appropriate for plasticity is incorrect however since plasticity 
obeys an incremental or flow-type functional law, closer to a 
fluid than a solid type, in which the specific configuration of 
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the initial undeformed state does not appear in the in
cremental or flow type constitutive relation at later times. 
Deformation-type plasticity theory, in which the stress is 
determined by the total plastic strain, lends itself to sim
plification through use of the polar decomposition theorem 
but, except in the case of proportional loading, it is known to 
be inappropriate to represent plasticity, particularly at large 
strains. 

Study of the physical situation described in Section 4 
shows that the influence of the anisotropy generated by 
previous plastic flow on the growth of the back stress a arises 
from a spin associated with directions embedded in the body 
in which the residual back stress is also embedded. This spin 
also determines the appropriate Jaumann-type derivative of 
stress in the flow law that must eliminate the contribution to 
the material derivative of stress which is not associated with 
the current plastic flowing. The physical model presented 
considers the influence of the dominant principal component 
of a but an analogous spin and functional law will arise in the 
more complete analysis, based on the polycrystalline struc
ture, of the generation and influence of the deformation 
induced residual back stress. 

For the polar decomposition of the deformation gradient F 
= RU = VR, the spin of directions embedded in the body 
depends not only on RR"1 but also on U or V and their 
derivatives. For example, in a plane problem of a constant 
stretch X in a time-dependent direction 0(f), F = U = V, R = I, 
the spin RR ~' is zero, the principal directions of deformation 
rotate with angular velocity 6, and the lines of material 
elements coincident with the stretch direction rotate with 
angular velocity 6(1 - 1/X). Thus (" ) based on the spin RR"1 

could clearly not express the needed rotational influence of 
the back stress in this case and hence in general. In the case of 
principal directions fixed in the body, U can be diagonalized 
in the form, U = PA(t) P ~' , where the matrix of eigenvectors 
P is constant, so that the velocity gradient L becomes 

L = D + W = FF ' = RR '+RUU >R > 

= R R ' + R P A A ' P >R-'. (31) 

Since P and R are othogonal and the diagonal matrix product 
is commutative the last term in (31) is symmetric and hence 
RR"1 = W which also equals W*. Only in such a special 
situation will the modified Jaumann derivative ( ' ) be ap
propriate for finite-deformation plasticity analysis. 

Both the Jaumann-type derivatives (*) and (* ) as well as 
the conventional Jaumann derivative fall in the category (AY) 
discussed in the Appendix. Whereas W in the conventional 
Jaumann derivative expresses the average angular velocity of 
all directions around a point and so is an appropriate spin 
term in the constitutive equation for an isotropic body, for an 
anisotropic material certain directions will have a special 
influence and the range of objective derivatives (A3) permits 
this generality to be incorporated. The particular selection 
will depend on the physical mechanisms involved as already 
discussed. In the case of plasticity with isotropic hardening, 
the stress rate term devolves from the derivative of a stress 
invariant which is independent of rotation, so that the same 
contribution will result whichever Jaumann-type derivative is 
selected. 

Quite apart from physical appropriateness, it is fortunate 
that in plasticity analysis it is not necessary to use variables 
involving the virgin configuration of the material prior to any 
plastic flow, since many bodies plastically formed in 
engineering practice have previously been subjected to plastic 
flow when they were manufactured, for example, forming 
rolled sheet or extruded rods. The approach presented here 
for kinematic hardening exhibits the property necessary for 
application, that measurement of the yield surface (assumed 
in this case to be consistent with combined isotropic-

kinematic hardening) supplies the information needed to 
formulate the constitutive relation for the analysis of sub
sequent deformation. The shift tensor a and the isotropic 
component of the tensile yield stress <J0 comprise all that is 
needed concerning the previous history of plastic defor
mation. 

We have suggested a generally applicable formulation of 
kinematic hardening theory and have chosen a simple 
hypothesis for the macroscopic influence of the 
micromechanisms that generate the hardening. Clearly a 
thorough study of this aspect of the theory is called for. This 
may require an analysis of the micromechanics of 
polycrystalline material involving investigation of the in
teraction between deforming crystallites, combined with a 
more general study of the formulation and generalization of 
macroscopic constitutive relations. 

Finite-element computer codes which incorporate kinematic 
hardening and are considered valid for finite strain are in 
active current use. In view of the research findings presented 
here they can involve huge errors. There is thus an urgent need 
to clarify this question and to generate and demonstrate a 
reliable means of stress and deformation evaluation in this 
field of considerable technological importance. To date most 
forming analyses have been based on isotropic hardening 
theory, but it is known that the Bauschinger effect, which is 
exhibited by many structural metals, can have an important 
influence on such technologically important phenomena as 
the generation of residual stresses due to forming. This will 
increase the demand for reliable analysis to incorporate 
anisotropic hardening into computer codes and hence to 
complete the research task introduced in this paper. 
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A P P E N D I X 

Objectivity 
Since the modification of the conventional Jaumann 

derivative is proposed in this paper, it is perhaps worthwhile 
to write down explicitly the justification for the objectivity of 
the analysis. This involves investigating the superposition on 
the deformed body of a time-dependent rigid-body rotation 
expressed by the proper orthogonal matrix Q(C) so that the 
material point coordinates are transformed as x — Q x and 
(see for example [9]) 

D-QDQ/, W-QQ-'+QWQ/ (Al) 

The latter transformation expresses the geometrical in
terpretation of adding the spin Q Q ' associated with Q(t) to 
the original spin W transformed by the superposed rotation at 

that time, Q ( 0 • Such a transformation clearly applies to the 
spin of any constituent of the motion not associated with a 
specific coordinate choice such as a line of material points or 
the eigenvector triad of a or a. 

For a spin 0 satisfying the transformation 

O-QQ-'+QSlQ/ 042) 

the associated Jaumann-type derivative of a is 

a=a-Qa+a{l (A3) 

where a — Q a QT. The derivative a transforms as 

- ( Q Q r + QfiQ r)QaQ r + QaQ r (QQ/ + QfiQ/). 044) 

Since Q Q r is antisymmetric, two pairs of terms on the right-
hand side of 044) cancel and the transformed operator 
becomes 

Q(a-ila+aQ)QT (A5) 

This result permits a wide choice of Jaumann-type derivatives 
all of which are objective. 
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Corotational Rates for Kinematic 
Hardening at Large Plastic 
Deformations 
To iltustate the effect of the choice of corotational rates at large plastic defor
mations, expressions for the stresses developing in large simple shear are obtained 
in closed analytical form under the assumptions of a rigid-plastic material response 
and a Mises type isotropically and kinematically hardening constitutive model for 
two different corotational rates applied to the stress and the back-stress tensors. 
The observed difference in the simple shear response and the relative merits of the 
foregoing and other corotational rates are discussed, and a novel approach is 
proposed based on Mandel' work and the representation theorem for isotropic 
second-order antisymmetric tensor valued functions. 

Introduction 
In a recent paper Nagtegaal and de Jong [1] have 

numerically analyzed the case of simple shear for large plastic 
deformations using a Mises type kinematic hardening con
stitutive model. Utilizing the Jaumann (material corotational) 
rate for the stress and the back stress, they showed by 
numerical examples that a kinematic hardening rule of the 
Prager-Ziegler type [2] yields an oscillating stress for 
monotonically increasing shear strain. The authors attributed 
this result to the inability of the Prager-Ziegler kinematic 
hardening rule to realistically model the Bauschinger effect. 
In a subsequent paper, however, Lee, Mallet, and Wertheimer 
[3] attributed the stress oscillation to the use of the Jaumann 
rate rather than the inadequacy of the Prager-Ziegler 
kinematic hardening. They also proposed a different 
corotational rate which does not yield the stress oscillation 
even for a simple linear Prager-Ziegler kinematic hardening. 

The analysis in the preceding works [1, 3] was performed 
by numerical methods and as such some of the features of the 
associated phenomena cannot be fully revealed. The main 
objective of this paper is to solve the problem of simple shear 
analytically for two different corotational rates: the Jaumann 
rate associated with the material spin W, and a second rate 
given by a Jaumann type derivative associated with the spin 
RRr where R is the orthogonal part of the polar decom
position of the deformation gradient (a dot denotes the 
material time derivative and a T the transpose). The exact 
analytical solution of the differential equations governing the 
evolution of the stresses is obtained in closed form for each 
rate, under the assumption of a rigid-plastic material response 
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and a Mises type nonlinear isotropic/linear kinematic har
dening model. Numerical examples illustrate the nature of 
these solutions. Subsequently, the preceding corotational 
rates, as well as the one proposed by Lee et al. [3], are briefly 
discussed, and an alternative approach is proposed based on 
Mandel's works [4, 5]. 

The Constitutive Model 
The Jaumann type derivative, associated with a second-

order antisymmetric tensor 0 (usually identified as a "spin" 
tensor), of a second-order tensor q is symbolized by a 
superposed °, and defined by 

q = q + qfl-fiq (1) 
When 0 = W (material spin), equation (1) yields the usual 
Jaumann rate. The definiton of 0 must be such as to satisfy 
the objectivity requirement for q i.e., under a superposed 
time-dependent rigid body rotation Q the q must become 
QqQr. 

Representing now by s the deviator of the Cauchy stress a, k 
the "size" of the yield surface, and a a deviatoric shift stress 
tensor (or back stress) modeling the kinematic hardening, a 
Mises type yield criterion is given by 

/ - ! « . • a):(s-a)-k2=0 (2) 

where the : symbolizes contraction over two indices, 
equivalent to the usual trace operation for second-order 
tensors. Henceforth, all stress quantities (including moduli) 
will be considered being normalized with respect to the initial 
value k0 of k, which according to equation (2) represents the 
initial yield stress for a uniaxial tension-compression ex
periment if a = 0. A nonlinear isotropic hardening will be 
described by dk/d(P = c(ks - k) with & = [(2/3) D" : D"]* 
where W is the plastic rate of deformation tensor, ks is a 
material constant representing a saturation value for k, and c 
another material constant controlling the pace of saturation. 
With n = (3/2)'/j(s - a) Ik being the unit normal to /=0 (n : n 
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= 1), and assuming the normality rule for D^ and a Prager-
Ziegler type kinematic hardening (not necessarily linear), the 
evolution equations for a state o n / = 0 are given by: 

3 1 
Loading index: L=~ 

Rate Equations: I F = < L > n, -h„iy 

(3) 

(4) 

Consistency Condition: / = 0 => h = ha+c(ks—k) (5) 

where h and ha are the plastic moduli in uniaxial tension-
compression associated with ZJf, and (3/2)&u , respectively, 
and the Macauley brackets < > indicate the operation <A > 
= A if A > 0 and <A> = 0 if A < 0. Recalling the nor
malization with respect to k0, the previously assumed ex
pression for dk/de" can be integrated to yield 

A r = l + ( ^ - l ) [ l - e x p ( - c e p ) ] (6) 

Purely nonlinear isotropic hardening is obtained by setting 
ha=0, and purely kinematic by c = 0. The kinematic har
dening can be either linear for ha constant or nonlinear for ha 

variable. 
In view of the dependence of / = 0 on direct and mixed 

isotropic invariants of s and a and the use of properly defined 
corotational rates for a and a according to equation (1), the 
preceding constitutive relations are objective. The point of 
interest is to study the effect of the different corotational rates 
(definition of Q in equation (1)) on the material response. This 
will be studied in relation to the case of large simple shear. 

Derivation of the Stress Differential Equations for 
Simple Shear 

The motion in simple shear is given analytically by 

xl=Xl+y(t)X2, x2=X2, x3=X3 (7) 

where x, and Xh i = 1, 2, 3, are the cartesian coordinates of 
the current (at time t) and initial position of a material point, 
respectively, and y will be simply called the shear strain. In the 
subsequent analysis a rigid-plastic response is assumed, thus 
all deformation measures are plastic and the superscript p will 
be dropped from I F . It is a rather lengthy (for equation (9)2) 
but straightforward computation to obtain on the basis of 
equation (7) the expressions: 

Dn=D2l = - 7 , Du=0 for all other i,j 

W = - 7 
0 1 

1 0 
RR7 27 

72+4 

0 1 

-1 0 

(8) 

(9) 

where the kinematic tensors of equation (9) are presented in a 
2 x 2 truncated matrix form with all other components that 
have an index equal to 3 being identically zero. In obtaining 
the foregoing, the key relations tan d = X = (l/2)[7 + {y2 + 
4)'A] and 0 = 7/ (y2 + 4) were used, with X the maximum 
eigenvalue of U in the polar decomposition of the defor
mation gradient F = RU, and 6 the angle of the correspon
ding eigenvector with the axis X\. For a unified presentation 
either one of the antisymmetric tensors in equation (9) will be 
symbolized by 0, with fi12 = - fl2i = w and all other com
ponents zero. The preceding 0 defines objective corotational 
rates. 

The key differential equation is the one governing the 
evolution of a given according to equation (1) by 

ct=a-ail + Ua (10) 

where a is obtained from equation (4). Denoting by a prime 
the derivative with respect to 7, assuming that the initial 

values of a13 and a2i are zero but allowing for nonzero initial 
values of a n , a22, 033, and a12 symbolized henceforth by a 
superposed bar, u.se of equations (2), (4), (8), and the ex
panded component form of equation (10) yields: 

k 
•Sii=an. s22 = a22, sl2= — + ai2 (11a) 

V3 
•S33 =«33 = - ( a n + ^22), sn=an=0, 5 2 3 = a 2 3 = 0 (lib) 

where k is given by equation (6) with tP = 7/V3, and 

a'n = - a 2 2 = 2 ? ( 7 ) a 1 2 (12a) 

a i 2 = ^ha+z(y)(a22-an) (126) 

where z(y) = u/y. Use of s„ = a„ = 0 and equation (12a)j 
was made in deriving equation (lib),. Integration of the 
system of equations (12) yields the value of a as a function of 
7, and subsequently of s from equations (11). Nonlinear 
kinematic hardening is included for a variable ha. However, 
to easily obtain an analytical solution of the preceding system 
in closed form, linear kinematic hardening will be further 
assumed with ha = constant. With this assumption, suc
cessive differentiation of equations (12) and back substitution 
yields the following two uncoupled second-order differential 
equations: 

r a , ' 1 + 4 z 2 a u =2zy-ha + (d„ + a22)?J (13) 

z' I z' 
a'1'2 a 12 + 4z2 a a = - - ha — 

Z 3 z 
(14) 

with initial conditions at 7 = 0: a u = a11; a[x — 2 z(0)d12 

for equation (13), and a12 = ot12,a[2 = (ha/'i) + z(0) (a22 -
a u ) for equation (14), and always a22 = ( a u + a22) - an. 

Solution of the Differential Equations and Examples 

a. Solution for Corotational Rates Related to W 
(Jaumann). In this case according to equation (9)! z(y) = 
u/y = 1/2, and equations (13) and (14) become 

afi + a n = -zha+- ( an +a 2 2 ) (15) 

a ," 2 +a 1 2 =0 (16) 

subjected to the initial conditions a t 7 = 0 : a n = a u , a 1 ' 1 = 
«i2f a ]2 = a ] 2 , and a;2 = (ha/3) + (a22 - a , , ) /2 . 
Equations (15) and (16) are linear of second order with 
constant coefficients and their solution is straightforward 
yielding in combination with equation (11a) for the stresses: 

1 1 
sn = r « „ ( l -COS7) + - (a , , -a2 2)coS7 + a12sin7 

+ 2^n+a22) (17) 

k 1 1 
sn= — + -hasmy- - ( a n - a22)sin7 + a12 cos7 (18) 

V3 3 2 

The oscillating nature of the stress components is evident. 
Moreover, elimination of 7 from equations (17) and (18) and 
use of equation (11a) yields a circular path in the an - al2 

space. With all 6ty = 0, equations (17) and (18) are the closed-
form representation of the corresponding plots obtained 
numerially in [1, 3]. In this case su remains non-negative, 
thus, the negp'ave values of sn shown in [3] can be attributed 
to round off numerical errors. 

b. Solution for Corotational Rates Related to RRr. It 
follows from equation (9)2 that in this case z(y) = co/7 = 
2/(72 + 4) and equations (13) and (14) become 
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a,i + 
2 7 

a(i + 
16 

lyTW™11 

= hh° + -^4{&n + lk22\ 

a n + 
2 7 

a 12 + • 
16 

- « 1 2 : 

72+4 

1, 2 7 

3 V + < 

(19) 

(20) 
y-+t ( 7 + 4 ) 

subjected to the same initial conditions as equations (15) and 
(16), since at 7 = 0 the z(0) = 1/2 as for the case with W. 
Introducing the change of variable <j> = tan~' (7/2) the 
preceding equations become (rf2yIdcj>2) + Ay = G with G = 
(4/3)/)0(l + tan2</>) + 2 (a n + a22) for y = an (equation 
(19)) and G = (4/3)ha tan</>(l + tan2(/>) for j> = an (equation 
(20)). The general solution of the corresponding homogeneous 
equation has the form c,cos20 + c2sin2$ and a particular 
solution for each one of equations (19) and (20) can be ob
tained by the method of variable coefficents. Subsequently, 
being careful to observe that (d/dy) = [2(1 + tan 2 0)] - ' 
(d/dcj>), the corresponding constants cx, c2 for each equation 
can be specified by the initial conditions and, finally, using 
equation (11a) the following expressions are obtained for the 
stress components in terms of 4> or 7; 

ha [4cos20/«(cos<W - 2sin2</>(tan<£ - 20)] 

+ - (au -d2 2)cos20 + a:12sin2c/> + - ( « u + d22) 
2 -̂  

1 
- T ( an - a 2 2 ) 

7
2 - 4 

72+4 + a 
47 1 

12 7J + 4 2 
(an+£22) (21) 

St7= A +-/! a[2sin20tan0+40cos20-(l+4/n(cos0))sin20] 
V3 3 

( an -d2 2)s in20 + o:12cos20 

k * , 
— + r ^ « — 
V3 3 7 

L _ [ 7 3 - 4 ( 7 2 - 4 ) t a n - ( i r ) 

^( ! + 4 , n((7T?))] 
1 

_ 2 ( " n a22) 
47 

~T4 - a 1 2 - ; + 4 
(22) 

Y + n 7' 
c. Examples. To illustrate the nature of the preceding 

solutions, some examples will be presented graphically in the 
5H - 7 and 512 - 7 spaces. The stress-strain curves 
corresponding to equations (17) and (18) will be identified by 
(a), while the ones corresponding to equations (21) and (22) by 

For purely kinematic hardening and zero initial value of a, 
we set c = 0 in equation (6) (thus k= 1), ay = 0 and select the 
rather large value ha = 1 to emphasize the effect of kinematic 
hardening. The corresponding response is shown in the two 
plots of Fig. 1. For comparison, the straight line (c) in the sl2 

- 7 plot shows the response for linear purely isotropic 
hardening having a slope equal to ha of the kinematic. The Sj ( 
remains zero for isotropic hardening. The initial and limiting 
values of the stress and the slopes as 7 varies from 0 to 00 can 
be easily calculated from the closed-form expressions. 

b12 

10 

Fig. 1 Simple shear response for kinematic (curves (a) and (b)) and 
isotropic (curves (c)) hardening. The y axis is the curve (c) for the s •( ̂  - 7 
plot. Curves (a) are associated with W and (b) with RR . 

s12 ( b) 

/ " (a I 

1 1 1 1 1 
10 

Fig* 2 Simple shear response for combined isotropic/kinematic 
hardening. Curve (a) for W and (b) for RR . 

A more realistic material description can be achieved by a 
combination of isotropic and kinematic hardening with a 
smaller value of ha. For example, for• commercially pure 
aluminum such description can be obtained with ha = 0.1 and 
ks = 2.25, c = 2.57 in equation (6), recalling that for simple 
shear ep = 7/V3. With all au = 0, the corresponding sl2-y 
plot is shown in Fig. 2, the sn having exactly one tenth of its 
values shown in Fig. 1. The stress oscillation for curves (a) is 
now less pronounced due to the smaller value of ha. Finally, 
the response for the same material constants but with a12 = 
± 1/2V3" and au = a22 = 0 is shown in Figs. 3 and 4, 
respectively. The observed effect of such initial values of a12 

is remarkable and negative slopes are obtained even for the 
curves (b). 

Discussion and Conclusion 

The obtained closed-form analytical solution, equations 
(17) and (18), reveals the exact nature of the oscillating stress 
response in the analysis of large simple shear with kinematic 
hardening observed numerically in [1, 3] for the Jaumann 
rate. The corresponding solution for a rate obtained by a 
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2 , 
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i -
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yf ^ \ . (b) 

( a ) 

I 1 1 1 1 1 

10 

Fig. 3 Simple shear response for combined isotropic/kinematic 
hardening and a positive initial value of « i 2 . Curves (a) for W and (fo) for 
RRT. 

Fig. 4 Simple shear response for combined isotropic/kinematic 
hardening and a negative initial value of « 1 2 . Curves (a) for W and (b) for 
RFV. 

Jaumann type derivative associated with RRr, equations (21) 
and (22), yields a nonoscillating response for city = 0. Observe 
from equation (9)2 that the latter rate depends on the previous 
deformation through 7. This is expected due to the definition 
of R and brings again the subject of whether or not a 
dependence on an initial configuration is proper in plasticity 
with large deformations by means of both rotation and plastic 
strain. In general there is no reason why such a dependence 
should be excluded. Restricting attention to rigid-plastic 
response (or very small elastic deformations) in order to 
simplify the discussion, a plausible question is if one can at 
least in principle experimentally determine R and the total 
plastic strain by means of their effect on the current state of 
an already deformed material sample. With the assumption of 
a yield surface of the type of equation (2) one can in principle 
determine experimentally a and k but not an already exisitng 
R and total plastic strain and, therefore, RRr for the next 
incremental step. This piece of information must be given 
separately or assumed. For that reason in the case of initial 
anisotropy by means of an initial value of a12 (examples of 
Figs. 3 and 4), possibly obtained by previous deformation not 
necessarily associated with simple shear, we began the 
analysis with R = I (identity) at 7 = 0. Let us observe here 
that the use of corotational rate for the stress accociated with 
RR r was proposed by Green and Naghdi [6] in a spatial 
formulation of their theory in which the yield surface ex
pression depends on a plastic strain measure and R by means 
ofRr<rR. 

Nevertheless, equation (2) is a sufficiently simple and 
realistic constitutive assumption to deserve further con
sideration without the disadvantages mentioned in the 
foregoing. This prompted Lee et al. [3] to propose a 
corotational rate for a given by equation (1) where 0 was 
defined as the spin of a material line element which is parallel 
to the eigenvector of a with the absolutely largest eigenvalue. 
Thus, such rate is defined at each step by the present state of o: 
and it was shown in [3] that no oscillation is obtained in the 
case of simple shear. One point that needs further study is that 
under a continuous variation of the velocity gradient the 
preceding spin can change discontinuously if one of the three 

eigenvalues of a changes sign, because this will cause a 
discontinuous change of the eigenvector with the absolutely 
largest eigenvalue (recall that a is a deviatoric tensor). 

In view of the foregoing, it is worthwhile to look briefly at 
the work of Mandel [4, 5], The reader is referred to these 
references for details, and here it will briefly be mentioned 
that the notion of the multiplicative decomposition F = EP of 
the deformation gradient associated with the concept of an 
intermediate relaxed configuration as proposed by Lee and 
Liu [7], was supplemented by Mandel with the concept of 
director vectors fixing the orientation of the material. The 
corotational rate can then be defined by equation (1) with fi 
identified as the spin 0J5 of these vectors attached to the in
termediate relaxed configuration K{ obtained from the current 
one by pure elastic deformation (no rotation), and with 
respect to which all state variables are referred. Restricting 
attention to small elastic deformations and intiallly isotropic 
materials such as the one described by equation (2), the ex
plicit dependence on the rotated position of the director 
vectors ̂ disappears from the constitutive relations and ul

D = 
W - (PP~')a, the subscript a indicating the antisymmetric 

part and with P = P - w[
DP since P is attached to KX by its first 

index only. The important point now is that Mandel's theory 
requires constitutive relatigns not only for TV (can be defined 
as the symmetric part of PP"1), but also for (PP_1)„ when 
loading occurs (L >0) in order to obtain u'D. 

At this point we would like to propose the following for the 
formulation of such constitutive relations in the case of 
kinematic hardening. Since (PP~')„ in addition to its 
dependence on L is an isotropic second-order antisymmetric 
tensor-valued function of the arguments s, a, and k (recall 
assumption of initial isotropy), one can use Wang's 
representation theorems [8] to obtain general expressions for 
it. The simplest expression would be obtained using only the 
first generator as - sa given in [8] when loading occurs, i.e., 

(23) (PP-l)a=<L>7i(ocs-sa) = rikJ-(aDp-DPa) 

where rj is a scalar function of the isotropic invariants of s, a, 
and k, and the third member of equation (23) was obtained by 
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adding and substracting <L>ija2 to the second member and 
using equation (4)i. When a and s (or a and D") commute, 
which incjudes as special case the isotropic one with a = 0, 
one has (PP~')a = 0 and <ojj = W, i.e., the usual Jaumann 
rate is obtained. This approach requires the specification of 
the material function TJ (in the simplest case a constant) based 
on proper experimental data. An initial investigation has 
shown that oscillations may or may not be induced in the case 
of simple shear depending on the values of 77. 

In conlusion it can be said that the study of proper 
corotational rates for kinematic hardening is a particular case 
of the corresponding general problem associated with large 
deformation anisotropic plasticity. It is possible that a 
macroscopic approach similar to the one used to obtain 
equation (23), can provide an answer to this area of research. 

Note Added to the Proofs 
A simple shear analysis within the context of hypoelasticity 

was given by C. Truesdell [9] for a convected stress rate which 
can be rewritten in terms of a Jaumann corotational rate 
(brought to my attention by Prof. Nemat-Nasser), and by J. 
K. Dienes [10] for a stress corotational rate associated with 
RRr. Both of these works refer to hypoelasticity which does 
not consider the basic concept of plastic internal state 
variables (like the back stress a), and this appears to be the 
reason they have escaped my attention and that of the 
reviewers of the paper. 
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Developments in High-Speed 
Viscoplastic Flow Through Conical 
Converging Dies 
The problem of high-speed wire drawing is solved based on a global Coulomb 
friction condition on the die surface. The drawing force is determined as a function 
of the die angle, friction coefficient, reduction in area, and the Bingham number. 

Introduction 

In the mechanics of metal-forming processes - particularly 
in wire drawing - it is often required to determine the load on 
the machine tool that deforms the material into a new shape, 
the optimal conditions for the process-namely, the optimal 
cone angle - and the velocity field, strain rates, and stresses. 

Since no exact solutions are available for such problems, in 
[1-4] an approximate method was proposed for solving the 
strip or wire drawing problems in viscoplastic deformation. 
Two fundamental nondimensional numbers emerge from the 
analysis of the governing equations. One is related to the 
working speed-the Bingham number-and the second is 
related to the acceleration - the Reynolds number. The 
method used in the aforementioned papers is perturbation 
with respect to one or both of these numbers. The friction that 
prevails between the rigid tool and the sliding viscoplastic 
continuum was considered in a special local form, namely 
tre=m\IU^., where II, •, is the second invariant of the 
deviatoric part of the stress tensor and we[0,l] is the friction 
factor. 

This friction condition was first considered in [5] as an 
extension of the friction law used in classical plasticity. 

The description of the friction resistance between die and 
material in plastic forming of metals has been much studied 
[6], yet very little that is known would facilitate formulation 
of the exact functional relationship between friction and the 
other variables such as: normal stress, sliding speed, geometry 
of the contact surface, lubrication, etc. 

Since the friction is one of the most important factors in the 
study of the drawing process, in the present paper we analyze 
the high-speed wire drawing problem considering a global 
Coulomb friction condition on the die surface. A comparison 
between this solution and that obtained in [2], for some 
combinations of the process parameters, is made. 
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Formulation 

As in [1-4], let us assume that the mechanical behavior of 
the material can be described by a Bingham rigid-viscoplastic 
model. 

Let R, be the original radius of the wire, which is reduced 
by drawing through a conical converging die, of the semiangle 
a, to R2. The region occupied by the material is divided into 
three zones (Fig. 1). The material in zones 7 and 77 has a rigid 
body motion in the negative Oz direction, while zone 777 
bounded by the die wall and by two surfaces Sx and S2 (which 
are to be determined) is the domain where the viscoplastic 
deformation takes place. 

Assuming a stationary incompressible axisymmctric 
motion, in the absence of body forces, the governing 
equations, in spherical coordinates (r,8,(p) are: 

The balance equations: 

dtrr 1 dtrt 1 

~dr~ + 7 ~Ee + "r Qtrr ~ *» ~ ' w + treCtg 6) 

( dvr ve dvr ve
2\ dtre 1 dtm 1 

V dr r dd r I dr r dd r 

, ,. , w fll / dve v„ dve vrv9\ 

dvr 1 dve 2vr yectg 6 

dr r dd r r 

The constitutive equations: 

trr= ~P+ \2ri+—rjdrr, tee=-p+ (ir) + —-)dee, 

(1) 

tvv=~p+(2r)+—=r)d^>, tr6=(2n+-—:)dre, 

tlv = trv=o, n,. >k\ 

where d is the strain rate tensor, given by 

(2) 

dvr 

~37 dm = 
1 dve Vr 

~rld+lri 
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^ ^ ^ 
u(d)=a + b cos 20, 

A / l \ / I 
V(d) = - +B(~ +cos 26j +Kl (6)(- +cos 2d) + (8) 

^ £ ^ A l f + J ! r 2 W [ ( i + c o s M ) / n ( t g I ) 

*1 -

Fig. 1 The geometry of the wire drawing - ( 1 -3cos 0)(1 +cos 0)] 

and 

' - - ? + ^ . *.-&£•£-*). « ™~!J>><..[(5-»M'»i) 
dev=drv = 0 -(1 -3cos 0(1 + cos / ) ] * , 

n d = ^(ePrr+dk+d^+ldk) K2(0) = l\0 ffOsin f ( - +cos 2f)d/, 

is the second invariant of the strain rate tensor, t ' is the \2u — u' ctg0 ^ , u' •. 
deviatoric part of the stress tensor, and vr, vt are the com- 5(0) = — — ( — 1. 
ponents of the velocity vector. 

The preceding equations are valid in the region 0 < 0 < oc, "V 4 "V + 4 
r2(6)<r<rx(6), where r=rl{6) and r=r2(6) are the 
equations of the surfaces Si and S2, respectively. 

If dimensionless variables, denoted by the index " 0 , " are We also have 
introduced as 2b /1 \ 

P°0(r°,d)= - 33 ( - + cos 26) +c, 
r=r°R2, v, = v°v2, ve = v°ev2, P=P0^ (4) o n 0 ( 9 ) 

^2 p°l(r°,d)=-A lnr°+h(6)+C, 
in the equations (l)-(3), two nondimensional quantities are where 
involved, i.e., 

„ kR2 u „• , u A h'{6) = v'{6) 
Bg= = the Bingham number, and 

1,1)1 + 6-^l -!L( u \ - 3u' 
„ pv2R2 . n , , , sin 6 dd\ I 7JT J / ,,,2 ' 
Re= = the Reynolds number. ,,,2 , " ~ , 2 , " 

r, A/-5" + ~4™ 2 A/ 3 u + ^ ~ 
In what follows we assume that Bg < 1 and Re < < 1, and 

accordingly we neglect the inertial terms. Here a, b, c, and A, B, and C are constants. 
The main problem consists in integrating the equation Using the previous expressions we obtain 

system (l)-(3) with suitable boundary conditions. 
As we have already mentioned, the global Coulomb friction R\v2 k 

law will be used as a model to describe the friction that takes vr(r<&)= y- u(6) r v(6) +0(Bg2) , 
place between the die and the sliding viscoplastic continuum. ' 
Solution v, (r,ff) = 3 ±r^g + O(Bg^) (10) 

2i)R2v2b / 1 \ Ar\R2v2a r; v2 

Introducing the stream function \p = \p(r,6) = R2v2i/ (r°,8), the a n c j 
equation (1)3 lead to 2r,Rjv2b , 1 \ 

1 dt 1 df t„= 3 ( - + 3 cos 26) + 3 . 
vr=-—. " , ve = — - . (5) r3 \ 3 / r3 R2 

r2sin 6 36 rsin 6 dr 

We expand the functions i/-°CV) and p°(r°,6) in power +/c\-h(6) +A In— -2v(6) + - — = c ] +0(Bg2) , 
series of the form L R2 I ' u>2 J 

t°(r°,6)= 2](Bg)"^(/-o,0), ^ " + 4 

2r\R\v2 (b \ r)V2 r 

p W ) = £(Bg)"/>°(r°,0). (6) r3 \3 J R2 L 
/ l>0 

Substituting (6), via (3) and (2), in the equilibrium - + /4 / / ; — +4 i> (0 ) -C-6c tg 0 
equations (1), and equating terms of the same order in Bg, for Ri sin0 
the first two approximations, one gets 

(11) 

uiiv ixioL LVVVJ a.yyi i / A i i n a i i u i U ) u u v 5VW JJ 

i,°0(6)=\eu(t) sin tdt, I u'2 J 
Jo J 3 u 2 + 

^(/•°,6l) = /-oV(0)=/-O3[ u ( 0 sin tdt, 

where 

(7) ^ 4 

+ 0(Bg2), 

2TJ/2|U2 /& ( -)-M-*< t^=-L-j-t U - « - - ^ c + A: -A(0) 
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r <f>(6) 
+ A In 2v{B) - C + 6 c t g 6 

R2 sin0 
3u2 + 

— 1 
„ ' 2 J 

Z" 4yv 

R, 

2 sin3 ex [.+i(w-i)] + a. 

+ 0(Bg2), L V sinoc 2 / 

1 1\ «'(«)ctgoc 

+ 
H ( o c ) 

2A 3u2 + 

trn — 
2t\R\v2b . «'(») 

3«2 + 
r M l( /> •-, 

sm26-k\v'(6)+ -

2J3u2+-
-4v(oc)-u' (oc)ctg oc + C . 

+ 0(Bg2). 

Across the surfaces S1, and S2 the dynamical conditions of 
compatibility 

[v„]=0, 

[tk/nk]-Pv„[vl]=0 (12) 

must be satisfied. Here v„ is the normal component of the 
velocity on the singular surface. From the relation (12)! we 
determine the equations r=r,-(0), / = 1 , 2, O<0<oc, of the 
surfaces S, and S2 in the form 

The tangential and normal stress resultants acting on the die 
surface 0=oc, /-2(oc) </•</•,(«), along a line y> = const, are 
given by 

• n ( « ) i l l " ) 

rj(oc) 
/• sin oc dr= — R2 sin oc 

r ^ i - ^ ? 2 1 
-2t\v2 sin 2oc s inocW? 2—^ ¥k R\ 2sin2c 

« ' ( * ) 

r^/fsin2*? — Rlv2[(b-a 2b , 
)C0S6 — COSJ0 + -I] 

2J3u2 + 

rf<p(6») = 0 , / = 1 , 2 
5? 

) r 2 ( o c ) 
r sin ccdr = R\ 

2sin<x 
(13) 

From the relation (12)2 we determine the stress resultants 
{X1, Y', Z1) and (X", Y", Z") which act on the surfaces S, 
and S2 toward the rigid zones / and II. Computing the 
corresponding integrals one gets 

X'=Y'=X"=Y" = Q, 

f i<° 

J r2(<* 

-flji?ti2sir 

+ k[-h{<x)(l-R±)+A(ln 

R2(Ri-R2) r,v2 

R>3 CR-, 

Mi 

(-1) 
(15) 

R\ -~±ln-
1 

R-t sinoc R1, sinoc 

- ^ r = — ^ i — sm J oc Mw - i ) ] -? 
+ * r - A ( o c ) + / i ( / / i - 4 i — ~ ) + 

L \ 7?2sin oc 2 / 

3 / -J i\2 

1x «'(0c)ctg0C ^)('-|)]J-
« ( o c ) 

2 J ^ 
« ( « ) 

3H2 + 

= - + 4 u ( o c ) + u ' ( o c ) c t g o c - c ] , (14) 
u'2 -I 

3«2 + 

The Kinematic and Boundary Conditions 

To determine the parameters a, b, c, and A, B, and C we 
shall use the following conditions: 

Bg=0,1 
r%=10o/o 

1 2 3 4 5 6 7 <? , 9 10 11 I? 13 % IS 

Fig. 2 The relative drawing stress versus die angle 

* • " cC 
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(a) the vt component of the velocity is zero on the die 
surface; 

(b) the singular surface S, passes through the points P, and 
Pi'; 

(c) the friction condition on the die surface is prescribed; 
(d) the back force Zl is given. 
The condition (a) yields 

A 2 , 
- (1 — cosoc)+ -ficosocsin^oc 
6 3 

after a long and tedious computation, we get the following 
formula for the magnitude of the relative drawing stress 

V3Bg 

Bg/«(^) G(«jM,r%)], 

+ 

+ Jo"sine[A',(0) ( ^ + cos2fl) +K2{6) [ ( ^ 

cos20) /«( tg - ) - (1 -3cos0) (1 + cos0)l]d0 = O. 

where 

(16) 

12 sin—cos3—(sin oc + ucos oc) 
2 2 

The condition (b) gives 

1 2 , b 
„ + (a —i)cosoc+ - d c o s J o c - a + - =0 . 
2 3 3 

(17) G(oc,M,r%) 

The friction condition on the die surface taken in the form 

T=-/JN,0<IJ. 

gives the following two relations 

(18) 

2briv2sin 2ocsin2 <x 2 _R2(Rl-R2) 

2sin ̂
-[4(--«)^si 1 " 2 

snroc 
R2(Ri -R2) 

* , 3 
(19) 

-<£(-§)]• 

('-!)['• («)+ 

s2 

2 J 3 M 2 + 
w' 2 -I 

/«-
1 

=/tf_/i(a)(i_§)+^rto_^—g 
P(- V i ? 2 / L /?2sinoc fl2 ij smoc 

6cosoc 
sin2oc 

A / 3 " 2 + ^ T 

Assuming Z ' = 0, the condition (d) gives 

2 
C R Ri 

•• \a— - +2b cos2oc , 

C=-h{<x)+A(ln-^ - ) 
\ R2sm<x 2 / 

1 « ' ( « ) M(oc) 

(20) 

+ - Ctg oc 

3w2 + J 3 " 2 + -T 

+ 4y(oc) +y'(oc)ctg oc. 

Solving the system of equations (16)-(20) and using (14), 

V3si sin ex 
- (1 + /xctg oc) 

2 lnRl 
(1 + / i C t 8 0 c ) t g T - ^ - ^ - i ? 2 

and 

sin 2 a + y [ 2 + ^ ( l + ^ ) ( 2 - 3 c o s 2 o c ) j 

sine d6 

X, = 

0 Vl-sin26»(X1-X2sin20)' 

sin30tf0 
0 Vl-s in 20(X,-X 2s in 20) ' 

4+£(•+§;)] 

(21) 

r R2 / Ri\ 1 
3sm oc + fi 1 + cos oc H ( In ) (1 ~2cos oc) 

(22) 

[ s i n 2 o c + / t [ l - j ? ? ( l + | ? ) c o s 2 « ] ] > (23) 

• -K-;K-:)] r 
s i n 2 o c + ^ r 2 + ^ 2 ( l + ^ 2 ) ( 2 - 3 c o s 2 o c ) l J 

aY being the tensile yield stress. 

Conclusions 

The relative drawing stress is a function of the die angle oc, 
the friction coefficient /x, the reduction in area r per
cent = 100(1 -R2/R

2), and the Bingham number. 
The formula (21) allows the analysis of the drawing 

process, i.e., the estimation of the influence of the drawing 
parameters on the drawing stress. This formula is similar to 
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that deduced in [2] where the local friction condition 
trg = mVII,' was used. It should be mentioned that in the 
foregoing formula the reduction /'(percent) is much more 
involved, appearing too in the arguments of the functions F 
and G. 

In Fig. 2, the relative drawing stresses are plotted com
paring those given by formula (21)-the interrupted line-with 
those in [2]-the full line-for some combinations of the process 
parameters. Accordingly, if for the reduction r(percent)= 10 
percent both these curves practically coincide (/x = 0.033 and 
m = 0.049). for the reduction /-(percent) = 20 percent one can 
see that the stress calculated by the formula (21) gives smaller 
values. These curves exhibit minima which correspond to the 
optimal drawing angle of the die. 

Finally, we mention that both formulas for the drawing 
stress are identical in the absence of friciton {^ = 0, m = 0). 
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Statistical Cumulative Damage 
Theory for Fatigue Life Prediction1 

A statistical cumulative damage theory is developed with the purpose of prediction 
of mean, standard deviation and probability density of fatigue lifetime of randomly 
variable specimens subjected to the same deterministic cyclic loading program. The 
theory requires availability of a deterministic cumulative damage theory for ideal 
nonvariable specimens, called clones. Detailed analysis is given for two-stage cyclic 
loading based on a previously developed deterministic cumulative damage theory 
and log-normal distribution of S-Ncurve lifetimes. Results indicate that the usual 
interpretation of deterministic cumulative damage theory in terms of means of 
lifetimes is not valid for significant scatter. Preliminary experimental results for 
two-stage loading are compared with analytical predictions. 

Introduction 
The problem of the prediction of fatigue lifetime for a 

specified cyclic loading program is known in the literature as 
the Cumulative Damage (CD) problem. The loading program 
may be described by a function S(n) where S is amplitude of 
stress or strain and n is the number of elapsed cycles. It is 
required to determine the number of cycles to failure nf. To 
minimize complexity it is assumed that the minimum-to-
maximum amplitude ratio R and the frequency remain 
constant during cycling. The first condition is automatically 
fulfilled in the important case of reversed cycling, R = - 1. 

Experience shows that when specimens of the "same" 
material are subjected to identical loading programs the 
resulting lifetimes are quite different and exhibit considerable 
scatter and thus nj must be regarded as a random variable. 
Therefore the goal of CD theory should be defined as 
determination of the probability density function (PDF) of nf 
or, at least, the evaluation of its mean and variance. While 
there exists a very large body of literature on the cumulative 
damage problem only a relatively small part is concerned with 
analytical treatment of scatter. A recent rational approach to 
the problem in terms of Markoff process statistics has been 
given by Bogdanoff [1-3]. Reference [1] also contains an 
excellent discussion of previous work on statistical treatments 
of the problem. 

In the event that S(n) is a deterministic loading program 
the scatter in nf is primarily due to internal material 
variability of the specimens which produces different 
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developments of the fatigue failure process. Another im
portant practical problem is the case when the loading 
program is of random nature, e.g., spectrum loading. In this 
case the scatter in n/ is produced both by variability of load 
and material. This question will not be addressed here. It is 
felt that treatment of the case of deterministic cyclic loading 
program is a prerequisite for treatment of random load. 

A fundamental question is the nature of the information 
required for determination of lifetime. The point of view 
taken here is that this information consists of the statistics of 
test data for simple cyclic loadings, hopefully, but not 
necessarily, constant amplitude cycling as expressed by the 
usual S—N test data for the material specimens investigated. 
Such a point of view may be termed phenomenological since it 
is not explicitly concerned with the development of 
microfailures or with the growth of internal macrocracks. The 
basic idea underlying the analytical treatment is that a 
deterministic cumulative damage theory must first be 
developed for ideal nonvariable specimens and then be 
randomized to take into account material variability. This is 
done in the present work in terms of the CD theory developed 
previously by Hashin and Rotem [4]. 

General Approach 

The basis for statistical treatments of mechanics problems 
is generally a mathematical formulation for a deterministic 
realization of the problem. In the case of a random input 
problem, such as vibrations of a structure under random load, 
the deterministic realization is the deflection function for 
deterministic load from which the deflection statistics may be 
obtained in terms of load statistics. A much more difficult 
kind of statistical problem is the case of random properties, 
for example: an elastic body with randomly space variable 
properties under deterministic loads. In this case the deter
ministic realization is one nonhomogeneous sample elastic 
body and the statistical problem is formulated in terms of 
differential equations with random coefficients. The 
statistical CD problem is of the latter kind since the scatter in 
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lifetimes is due to material variability of the different 
specimens that are failed in a test program, resulting in a 
different development and duration of the complex 
microstructural damage accumulations that terminate in 
ultimate failure. 

To define a deterministic realization we imagine that we can 
reproduce a fatigue specimen in all minute microdetails in any 
number of replicas. Such hypothetical specimens will be called 
clones and clones of one kind will be called a clone species. 
(The concept has been introduced in [5] in the context of 
fatigue failure under three-dimensional cyclic stress.) If 
members of a clone species are subjected to identical cyclic 
loading programs they will have exactly the same fatigue 
lifetime. Therefore a clone species obeys some completely 
deterministic CD law, which cannot however, be ex
perimentally investigated since clones are not available. 

The remaining alternative is theoretical derivation of the 
CD law of a clone species. Suppose that this has been achieved 
in some fashion and that the prediction of lifetime for loading 
program S(n) is n$ which will be a function of certain global 
material parameters of the clones, which are brought in by the 
deductive process leading to the CD law. In a real fatigue test, 
different specimens are subjected to same S(n). Each of these 
may be regarded as the representative of a clone species. Then 
the lifetime of the /th specimen is nfi which is a function of the 
material parameters of the /th specimen and thus the statistics 
of it]-, is determined in terms of the statistics of the specimen 
parameters, which must be known. Then the test of the 
success of the theoretical CD law is whether the statistics of n; 
derived on its basis, is confirmed by the statistics of test data 
for nf. 

The most basic fatigue testing information is obtained by 
constant amplitude testing. Obviously any clone species will 
have a deterministic S—TV curve expressed as 

S=<Ka„b„...,N) (1) 
with inverse 

N=Ma„b„...,S) (2) 
where S is constant maximum amplitude of stress or strain, TV 
is the number of cycles to failure, and a-„ bh . . . are 
parameters of the /th clone species. Since S can be controlled 
in a fatigue test it is convenient to consider (2) for constant S 
as basic experimental information. Each specimen in the 
constant S test is again regarded as the representative of a 
clone species and thus (2) has a different value for each 
specimen. This defines the random variable N(S) which 
assumes values TV, as defined by (2). 

As an example for a CD problem we consider the case when 
S(n) is a multistage cyclic loading, constant St for nl cycles, 
S2 for n2 cycles, etc. and let failure occur at amplitude Sk. 
Then 

nf = nl+n2 + . . . « * / (3) 
where nkj is the unknown. The prediction of a deterministic 
CD theory will generally involve the lifetimes TV,(S,), N2(S2), 
. . . as given by the S—N curve and perhaps other parameters 
such as fatigue limit stress Se. Thus for the /th clone species 

« « = i("l' n2' • • • 'nk-U NU> N2h • • • . Nkh Sen • • •) ( 4 ) 

where from (2) TV,,- = \l/(ah £>,, . . . , Sj). If \p is known, the 
PDF and moments of (5) can be determined in terms of the 
joint PDF of the random variables TV,-, Se, etc., entering into 
(5), by standard methods of probability theory; see e.g., [6]. 
(The assumption that all specimens (clone species) fail at 
stress level Sk is not essential and has only been introduced for 
reasons of simplicity.) 

The minimal information to perform any analysis is the 
PDF of TV}. A popular assumption is that ?/ = log/V at any 
stress level is normally distributed; see e.g., [7]. In this event 

TV is said to obey a log-normal distribution. Many test data 
have demonstrated that this assumption is quite accurate, see 
e.g., [7, 8]. An example is shown in the Appendix. 

The analysis will be enormously simplified if it can also be 
assumed that ij7- and i\i at two different stress levels S, and S, 
are statistically independent, because in that event, the joint 
PDF of rjj and rj/ reduces to the product of their individual 
PDF. This cannot of course be expected to be valid when S, 
and S/ are very close but this is not a case of practical interest. 
An analysis of an extensive set of test data given in the Ap
pendix shows that independence is fulfilled with remarkable 
accuracy. All of the analysis to be given can be carried out 
without this assumption. 

Deterministic Cumulative Damage Theory 

A considerable body of literature on the subject exists. For 
a review, see e.g., [7, 9, 4]. In general the approach has been 
empirical or semiempirical and many of the treatments have 
been confined to special cyclic loading programs. The most 
well known and most often used result is still the primitive 
Palmgren-Miner rule although it is quite clear that it is not 
acceptable in any general sense since it is insensitive to 
sequence of loading effects and its agreement with test data is 
at best erratic. 

It has usually been assumed that a deterministic CD result is 
expected to predict mean lifetime. For example the Palmgren-
Miner rule for two-stage loading would be interpreted in this 
context as 

where the brackets denote means. It will be shown on the basis 
of present treatment that such an interpretation is 
questionable. 

In the present work a CD theory developed by Hashin and 
Rotem [4] will be employed and some of its basic ingredients 
will now be summarized: 

1. The information necessary to predict lifetime are the 
damage curves in the S—TV plane. A damage curve represents 
the residual lifetimes n2 in a two-stage cyclic loading program 
where Si and n{ are fixed and S2 is variable. It is the locus of 
all n2 plotted horizontally to the left from the S—TV curve. 

2. If the S—TV curve has a fatigue limit, all damage curves 
converge into it. This implies that dependence of fatigue limit 
stress on loading history is neglected. 

3. If the S—TV curve is linear in S-logTV or logS-logTV plane 
then the damage curves are also assumed linear in these planes 
(since the S—TV curve is a member of the damage curve 
family), Fig. 1 

4. The state of "damage" is characterized by remaining 
residual life. Different cyclic loading programs, terminated 
before failure, with same residual life for subsequent constant 
amplitude cycling are defined as equivalent. An equivalent 
loading postulate has been formulated that states: cyclic 
loading programs that are equivalent for one subsequent 
stress level are equivalent for all subsequent stress levels. 

The equivalent loading postulate leads to uniqueness of 
damage curves and to a unique procedure for lifetime analysis 
in terms of damage curves for any cyclic loading program. 
Such assumptions are reminiscent of that made by Bogdanoff 
[1] that at any stage of a cyclic loading program further 
damage accumulation depends on the current state of 
"damage" and not on its history of accumulation. 

Some pertinent results derived in [4] will now be recalled. It 
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Fig. 1 Semilog linear damage curves through fatigue limit 

is assumed that the S—N curve is linear in S-log/Vor logS-
logN; see Fig. 1. Thus 

S=S0 (1 + TlogAO (a) semilog 

S=Nr (6) 
(b) log-log 

and that there is a fatigue limit (Se; Ne). Then it follows that 
for two-stage loading: Si for nt cycles, S2 for n2 cycles-to-
failure, n2 is given by 

m + N2 

• 1 (7) 

where 

S] —Se 

log(S2/Se) 

log(S,/Se) 

semilog 

log-log 

(8) 

The result (7) is in reasonable agreement with experimental 
data in the sense of "mean fit" [4, 10]. For three stage 
loading: Si for nx cycles, S2 for n2 cycles, S3 for n3 cycles - to 
failure 

[(Hi/W2)"2i +n2/N2]<>32 +n3/Ni = l (9) 

where /32i is the same as (8) and /332 is similarly defined with 
stresses S3 and S2. The result (9) is easily generalized to any 
multistage loading program, in particular block loading. 
Details are given in [4]. In the case when the loading program 
S(n) is defined by a continuous function of n, the number of 
elapsed cycles, the determination of lifetime requires the 
solution of a nonlinear differential equation with initial 
conditions, [4]. 

It may be noted that the Palmgren-Miner rule is a special 
case of the general theory in the sense that it can be derived on 
the basis of a certain damage curve family, reference [11]. 

Statistical Analysis of Two-Stage Loading 

As a simple example for the general approach to statistical 
CD theory outlined in the foregoing, the case of two-stage 
loading will be analyzed. It is assumed that the deterministic 
CD theory of [4] is valid for a clone species with a deter
ministic S—N curve of type (6) which has a distinct fatigue 
limit and linear damage curves through fatigue limit. 
Denoting 

r ^ l o g T V ^ S , ) r,2=logiV2(S2) (10) 

it follows from (7) that 

«2/,. = «2,. = 10"2/ [ l - n f i o -»w] (11) 

It is recalled that according to (8) the fatigue limit Se enters 
into (3 and in general this is a random variable, thus different 
for each clone species. However the scatter of Se is confined 
to a relatively small range. For example: the fatigue limit 

range for steel is quoted in the literature as 32-34 ksi 
(220.7-234.5 MPa) and it turns out that lifetimes predicted by 
the analysis to be outlined are only weakly affected by such a 
variation of Se. Consequently the scatter of Se is neglected 
and thus (11) becomes a function of the two random variables 
•qi a n d T\2. 

As has been discussed before and with support of the 
analysis given in the Appendix, it is assumed that r\x and r/2 

are each normally distributed and are statistically in
dependent. Therefore their PDF are given by 

1 2 2 
P(Vi) = 7 = = - e " ( ' , i " < ' ' i > ) /2ffi 

P(r)i) = -

<7 lv27r 

1 

^2 72^ 
. g - ( l 2 _ < ' 2 > ) n"2 

p(y\,V2)=p(vi)p(v2) 

(12) 

(13) 

where < r\ > and a are the mean and standard deviation of r/, 
respectively. Equations (11)—(13) are sufficient information to 
evaluate the statistical moments and the PDF of n2. If in
dependence is not valid, equation (13) could be expressed by a 
bivariate normal distribution. 

For purpose of evaluation of moments it must be noted that 
if «! > Nu the specimen fails in the first loading stage and 
therefore n2i = 0. This implies the restriction 

7j1(> log/7, =X (14) 

which is equivalent to the requirement n2i > 0. Therefore the 
mean of (11) is given by 

<"2>=\^\"iOn(l-„flO~toi)p(Vl,V2)dv,dV2 (15) 

with similar expressions for the other moments. It is easily 
shown in terms of an integral tabulated in [12, (p. 303, in
tegral 7.4.32)] that 

^10~">p(V)dr, = g(y)h(y,\) (a) 

1 2 
g(y)= - 1 0 7 ( < I > + T ' " 1 0 " /2) 0 ) 

h(y, \)=l+erf[Y <V> X +-y/«10g^/V2I (c) 

(16) 

W 
2 fz 2 

erf z= -p= 1 e~' dt 
V7T JO 

It follows from (12)-(13) and (16) that 

<n2> =g2(l)h2(l,0)[gi(0)hdO,\) 

-«f* i ( - /3)Ai( - /3 .X) (17) 
where a subscript 1 or 2 on a function implies evaluation with 
<iji > ,ox or <7]2 > , <r2, respectively. 

It should be noted that the lower limit zero for the i)2 in
tegration in (15) is not exactly correct since integration should 
start from N2=0, thus from r;2 — — 00, while J J 2 = 0 
corresponds to N2 = 1. From a practical point of view it is of 
course evident that one fatigue cycle more or less makes no 
difference. From a mathematical point of view it should be 
noted that lower limit of integration - 00 would replace h2{\, 
0) by h2{\, 00) = 2. Noting that the error function is practically 
equal to 1 for arguments exceeding 2 it is clear from 
examination of (16c) that to all practical purposes 

h2(y,0) = 2 = h2(y, 00) (18) 

The variance of n2 is given by 
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Table 1 
5 = 2 . 0 . 

<»»,> 

Mean and standard deviation of n2. Semilog S-N curve. Low-high cycling, 6", = 0.3550 S2 = 0-45^0 Se = 0.25^0 

<V2> "i <n2> 

23521 
23575 
23739 
24278 
25054 
18715 
18625 
18316 
17563 
17816 
10705 
10392 
10066 
10699 
12071 
2598 
3374 
4695 
6939 
8993 

% 

440 
2210 
4506 
9752 
16654 
456 
2312 
4911 
10392 
15923 
693 
3553 
6330 
10130 
14450 
1030 
3439 
5456 
8938 
13038 

"2 

23520 
23640 
24005 
25498 
28106 
18725 
18883 
19375 
21342 
24636 
10728 
10955 
11659 
14417 
18853 
2631 
2927 
3845 
7405 
12998 

•<7V,> 

158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 

% 

3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 

<N2> 

25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 

<v2 

463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 

5.20 

5.20 

0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 

4.40 

4.40 

0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 

40000 

80000 

120000 

150000 

Table 2 Mean and standard deviation of n2. Semilog S-N curve. High-low cycling. .SV = 0.45S0 Sj = 0.3550 Se = 0.2550 
5=0.50. 
<V,> <v2> <n2> "2 "2 <N,> <N2> 

4.40 

4.40 

0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 
0.008 
0.04 
0.08 
0.16 
0.24 

5.20 

5.20 

0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 
0.01 
0.05 
0.10 
0.20 
0.30 

5000 

10000 

15000 

20000 

87798 
88286 
89828 
96252 
107968 
58500 
58771 
59624 
63198 
70536 
36019 
36123 
36459 
38999 
45678 
17066 
17046 
17719 
22141 
29432 

2124 
10720 
22071 
49613 
90709 
1632 
8242 
17003 
38427 
69932 
1401 
7084 
14651 
31757 
56194 
1361 
6851 
12924 
25436 
45245 

87808 
88513 
90751 
100222 
118030 
58513 
59092 
60929 
68742 
83581 
36034 
36516 
38045 
44588 
57148 
17084 
17484 
18754 
24224 
34864 

25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 
25123 
25226 
25549 
26883 
29263 

463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 
463 
2328 
4746 
10250 
17488 

158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 
158531 
159543 
162747 
176219 
201195 

3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 
3651 
18429 
37976 
85650 
157332 

< = <«!>-<«2>2 

(19) 

<"l>={0°°J"io2'2(i-«fio-^)2P(';i)P(')2)^i^2 

It follows from (15)-(16) that 

</il>=g2(2)A2(2,0)fe1(0)A1(0,X)-2nfg1(-i8)A1(-ftX) 

+ n?gi(-20)hd-2fr\) (20) 

It is also of interest to compute the mean and standard 
deviation of the S-N curve lifetime N in terms of mean and 
standard deviation of ij = log N. These results easily follow 
from (16) with 7 = 1 , 2 , respectively. Therefore 

o l0»p(7))dri=g(.lMl,0) = 10<'>>+l"l0°2v/2 

tension-tension fatigue as obtained in [8]. The S—N curve is 
of semilog type and is given by 

S=S 0 (1-0 .125 <rj>) 

S0 = 1467 MPa 

Se =0.25 S0 < i ? e >=6 .0 

where S0 is defined by intersection of the S—N curve with the 
S axis. Calculations of <n2> and a2„ have been performed 
for the stress levels 

Low-High 

"S!=0.35S0 

S2=0.45S0 

High-Low 

S, =0.45 S0 

S, = 0.35 S, 

O2N=\O \02"p{r,)dr,- <N>2 =g(2)h(2, 0) (21) 

</V> 2 = 10 2 < ' > -W n lS(io'"1 0< - l ) 
To illustrate the significance of the results obtained 

numerical calculations have been performed for a material 
characterized by the S—N curve for hard drawn steel wire in 

for various values of nx, a{, and a2. It has been assumed, for 
computation convenience only that a2 = ax <t]2>/<T]I> 
which for the stress levels chosen here implies a2 = 0.8 o^. 
The results are summarized in Tables 1 and 2. To understand 
the significance of the standard deviations of S—N lifetime it 
should be recalled that for a normally distributed random 
variable with mean <x> and standard deviation a, 95.5 
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, = 0.35So S2=0.45So 

Se =0.25 So 

<1?i>=5.2 <7?2>=4.4 

cr2 =0.80-, 

0.1 0.2 0.3 
Fig. 2 Mean of n2 versus standard deviation of log Uy. low-high 
loading 

percent of the values of x fall within the range [<x> -2a, 
<x> +2o]. 

The tables also show a quantity h2 which is defined as 

n 2 = < N 2 > t l - ( « i / < ^ i > ) ^ l (22) 

This is equivalent to (7) with replacement of iV, and N2 by 
their means. Consequently (22) expresses the usual in
terpretation of a deterministic cumulative damage theory in 
terms of means. It is seen that <n2> and h2 increasingly 
diverge with increase of scatter of S—N curve lifetimes. A 
comparative plot of the two quantities as a function of a{, is 
shown in Figs. 2-3. This implies that interpretation of a 
deterministic cumulative damage theory in terms of means of 
test data is not acceptable when the scatter is significant. Thus 
the Palmgren-Miner rule as expressed by (5) has the ad
ditional serious deficiency that it takes no account of the 
magnitude of the scatter of S-Nlifetimes. 

Another interesting and important phenomenon is the 
strong increase of the standard deviation a„2 relative to the 
mean <n2>. This is also shown in Fig. 4. It is seen that a„2 

can reach values larger than <n2 > itself at the time when the 
maximum ratio of N lifetime standard deviation to its mean is 
0.78 (crN /<A r i > for a{ = 0.30). The reason for this seems 
to be that the scatter of n2 is dependent on the scatters of A^ 
and N2 which are defined by their standard deviations. In
deed, the results clearly show that the larger nx, thus the larger 
the damage incurred at stress level S{, the larger is the scatter 
of n2. As «, increases <n2 > decreases. At the same time a„2 

is increasingly governed by aN] which is a large number which 
can easily become much larger than the decreasing <n2>. 

Finally, the probability of failure under specified two-stage 
loading will be evaluated. The Cumulative Distribution 
Function (CDF), F{z), is defined as the probability that 
failure occurs under two-stage loading S, for nx cycles, S2 for 
z cycles. This probability may be decomposed as follows 

F(z)=Pr(0<n/<nl)+Pr(nl <nf<ri\ +z) (23) 

where nf is the lifetime. The first part is the probability of 
failure during the first stage and is simply given by 

P K 0 < « / < « i ) = 
1 

ffjV27r 

1 

! : 

2 2 

-i[—(^F)] (24) 

By standard procedure, [6], the second part is given by 

Pr(nx <n}<nx +z) =Pr(0<n2/<z) 

= ] \p(V\,r]1)driidm (25) 

where D is the region in the ij, , ij2 p l a n e defined by 

0<n2(i?!,r;2)<z (26) 

Introducing the functional form of n2 from (7) into (26) and 
using (13), (25) assumes the form 
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- " " n, =24,000 

0.2 0.3 
Fig. 3 Mean of n2 versus standard deviation of log N^: high-low 
loading 

1.50 

0.50 

where 

P(Z> i?i) = log- (28) 
l - w f l O - " ' ! 

and X is defined by (14). Introducing (12) into (27), carrying 
out the r;2 integration, and substituting this result and (24) 
into (23) yields the CDF in the form 

™=i['-'(^r)]^L"K^?) 
+ erf 

o-i V2 

p(z,V\)~ <Vi> 
~a2'fh )]• 

- d i " <11 »2/2a? dl)i (29) 

Fig. 4 Standard deviation of n 2 divided by < n 2 > versus standard 
deviation of log N i : low-high loading 

Pr(0<n2f<z)=^p(v1)^ ^ PlviWvidrii (27) 

The integral (29) must be evaluated numerically. Plots of 
F(z) for various nx for the case <iji > = 5.2, <T?2 > = 4.4, 
CTI = 0.20, and <r2 = 0.16 are shown in Fig. 5. The values of 
F(0) are defined by (24). It is seen that with increasing nx the 
probability of failure in the first stage increases and so does 
the probability of failure in the second stage for specified 
n2=z. Figure 6 shows F(z) for specified nx = 80,000 and 
different au a2- This plot demonstrates the increase in the 
scatter of n2f with increasing ax and a2. 

More Complicated Loading Programs 

The method of statistical analysis presented can in principle 
be applied to any loading program but the implementation is 
complex. Consider for example the case of multistage 
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Fig. 5 Probability distribution functions of n 2 for various r^ 
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n,« 80,000 4.40 

10000, 20000 30000 40000 

Fig. 6 Probability distribution functions of n 2 for various a-\, <r2 

50000 

loading: Si for ri\ cycles, S2 for n2 cycles, etc. According to 
the theory developed in [4] failure in the last stage is given by 
the following scheme 

(Wi/Zv",)^!] two stage 

- [(rii/Nrfu +n2/N2]^2 ) three stage 

nv=N2[l-

nv= JV4[1 - {[(n./iV,)^! +n2/N2]Vn 

(30) 

four stage 

except the one for t]k, must be performed numerically. If the 
scatter of 17; is not large the PDF of 17,- will be of localized 
nature which may open up the possibility of simplified ap
proximations for the integrals but this topic is outside the 
scope of present work. 

An important kind of loading program is so-called block 
loading in which a specified loading program (block) is 
repeated periodically. In the simplest case the block is two 
stage, S] for nt cycles; S2 for n2 cycles. A procedure for 
deterministic lifetime evaluation for block loading has been 
given in [4]. This will here be recast in the following 
equivalent and simpler form: The recurrence relations 

where any of the fty is defined by (8) with stress S-, in the 
denominator and stress S, in the numerator. 

To evaluate the mean of n}J-, for example, each Af is written 
lO" obtaining «3(T;1, r\2, ij3). Then the mean is given by 
>«3 > 

Mi 

M2 

M3 

(32) 

S
oo n 00 /» 

lOg/11 J l0g«9 J 

"sOh. m> Vl)P(Vl)p(m)P(.V3)dVtdri2dri3 (31) 
M 

AMr+l 

1 +n2/N2 

1 /^1 

£even 
where the lower limits of integration, log «, for ?ji and log n2 
for ij2 express the fact that when failure occurs in the first or 
second stage, n^ vanishes. The PDF p{r\) may be of the 
normal type (12) or any other kind. Similar results may be 
written down for the variance and for means and variances of 
nkf for any k stage loading. It appears that all integrations, where /3 is defined by (8), define fatigue failure when 
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Table 3 Comparison of predicted with experimental data - two-stage 
loading 

Loading Sequence 

Si(MPa) 
S2(MPa) 
" l 

L-H 

268 
298 
20,000 

L-H 

268 
298 
35,000 

H-L 

298 
268 
5000 

H-L 

298 
268 
9000 

<n2> experimental 
<n2 > predicted 
<n2> P-M 
a„ experimental 
an predicted 

10,400 
12,390 
11,330 
7660 
1000 

7280 
9540 
8360 
3520 
2400 

30,140 
34,330 
52,000 
9530 
8830 

17,240 
17,860 
31,770 
8920 
10,960 

S-N data <N> aN 
298 
268 
221 

15,280 
77,300 
Fatigue Limit 

5870 
23,360 

l.OO- F(IJ) 

0.90 

0 . 8 0 -

0 . 6 0 -

0.50 

0.40 

0.30 

0:20 

0.10 

4.80 4.90 5.00 5.K) 5.20 

Fig. 7 Log-normal distribution of aluminum 6061-T6 S-N lifetimes 

TJ'IO" 

ftt^l (33) 

The condition (33) determines the number of stages nx and n2 

to failure, thus the lifetime L. The problem of evaluating the 
statistics of this lifetime when 7V\ and N2 are random 
variables is not simple. One possibility is numerical evaluation 
of many lifetimes Ltj for sample lifetimes Nu and N2J which 
are either members of statistical sets (e.g. log-normal with 
specified mean and standard deviation), or are the actual test 
data. Then the mean, variance and CDF of L can be found 
numerically. 

Since a deterministic procedure is available for any 
multistage loading, [4], such an approach can also be utilized 
for a random loading program consisting of random am
plitudes S, for random numbers of cycles /?,. 

Comparison With Test Data: Two-Stage Loading 

A preliminary two-stage testing program has been carried 
out by Dr. T. Gottesman at the mechanical testing laboratory 
of the University of Pennsylvania, using steel specimens and a 
MTS machine. Ten specimens were failed for each point of 
the S - N curve and for each loading sequence. In each case 
the cycling was fully reversed. The mean S—N curve was 
approximately of semilog type and therefore predictions were 
based on semilog damage curves. 

Table 3 shows a comparison of predicted with experimental 
results. Agreement is somewhat encouraging. Also shown are 
<n2> as determined by the P-M rule (5). More com
parisons with experimental data are obviously needed. 

Conclusion 

The statistical cumulative damage theory which has been 
developed here requires two basic kinds of information: (a) a 
deterministic cumulative damage theory for ideal specimens 
without scatter, and (b) the statistical distribution of S—N 
curve lifetimes for fixed stress levels (analytically, or a suf
ficient number of test data). In the present work a rational 
deterministic cumulative damage theory based on damage 
curves and an equivalent loading postulate has been em
ployed, [4]. The damage curve family employed in this work 
converges into the fatigue limit but the analysis may of course 
be performed for other types of damage curve families. The 
present cumulative damage theory avoids quantification of 
damage and substitutes for its residual life, which is a 
measurable quantity. Essentially, the future of a specimen 
that has undergone cyclic loading depends on the residual life 
at that time and on the manner of continuation of the cyclic 
loading program. 
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The statistics of the present approach is very simple because 
it essentially consists of interpretation of a deterministic 
lifetime as a function of random variables, i.e., the 
statistically variable parameters of the fatigue process that are 
primarily the S—N lifetimes. It has here been assumed that 
these lifetimes are log-normally distributed. This is a popular 
representation but the procedure can be carried out for any 
statistical distribution of lifetimes and also for any deter
ministic cumulative damage theory. 

The test of the cumulative damage theory chosen is of 
course experimental verification in the sense that analytically 
predicted means and standard deviations and CDF of 
lifetimes under a cyclic loading program must be compared 
with such quantities evaluated on the basis of test data. Such a 
comparison has here been given for preliminary test data 
showing fair agreement. 
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A P P E N D I X 

Log-Normal Distribution and Statistical Independence of 
Lifetimes 

An extensive set of fatigue test data for 6061-T6 aluminum 
coupons is quoted in [13], To check the validity of the log-
normal distribution the mean and standard deviation of 
iy = logA/ have been computed for the test data for S = 213.8 
MPa. The associated normal CDF is shown in Fig. 7. The 
points shown indicate percentiles that are above 5, 10, 15 
percent, etc., of the data. It is seen that the data conform 
quite well to the log-normal distribution. A similar 
examination of steel wire test data [8] also shows very good 
agreement with log-normality. 

To test independence the averages of products of log-
lifetimes at different stress levels have been compared with the 
products of the averages. This is shown in Table 4 and it is 
seen that the values literally coincide, thus are uncorrelated 
and therefore also independent. 

Table 4 Examination of noncorrelation of log-lifetimes 

/ S(MPa) <•/}> ij <Vilj> <iii><Vj> 
T 144.8 6.1278 23 34.280 34.271 
2 179.3 5.5927 31 31.385 31.375 
3 213.8 5.1201 12 28.640 28.635 
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Creep and Plastic Strains Under 
Side Steps of Tension and Torsion 
for 304 Stainless Steel at 593°C 
Results of nonproportional stress changes on creep and plastic strains resulting 
from abrupt changes in proportion of tension and torsion are reported. Both step-
up and step-down changes are included. Constitutive equations based on data for 
single step creep and recovery tests previously reported are used to describe the test 
results. A viscous-viscoelastic model with aging effects and modifications for step-
down tests predicted the creep behavior reasonably well. The prediction of time-
independent plastic strains is also described. 

Introduction 

Creep of metals at high temperature under changing stress 
states has received little experimental observation, especially 
for nonproportional load changes. References to prior ex
perimental work in this area through 1978 are given in [1]. 
More recent experimental work is found in [2-6]. 

The present paper includes experimental work on a 
reference heat (no. 9T2796) of 304 stainless steel procured by 
Oak Ridge National Laboratory. This reference heat of steel 
is being studied extensively in several laboratories. The 
microstructure of the reference heat of 304 stainless steel over 
a wide range of temperature and stress was reported in [7-9] 
and information on aging was reported in [5]. 

Creep and creep recovery data at 593 °C (1100°F) of the 
same reference heat were reported and analyzed in recent 
papers by the authors [4-6]. The analysis employed a viscous-
viscoelastic model {V-Vtheory) in which strain was resolved 
into four components; elastic eE, time-independent plastic ep, 
time-dependent-recoverable viscoelastic eVE, and time-
dependent-nonrecoverable viscous strain ev. In [4] creep and 
recovery data for combined tension and torsion at stresses 
above a transition stress were reported and found to be 
strongly nonlinear and synergistic. In [5] creep for stresses 
below the transition stress was found to be essentially linear 
and aging was found to have a considerable effect and was 
incorporated in the analysis. 

From the constitutive equations, including aging, 
developed in [4, 5] the results of creep tests under step-up and 
step-down stress changes were predicted with good accuracy 
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in [6] based on results of constant load creep and creep 
recovery tests reported in [4, 5]. 

In the present paper results of nonproportional stress 
changes consisting of side steps of tension and torsion are 
presented in which abrupt changes are made in the proportion 
of tension and torsion. The constitutive equations developed 
in [4-6] are employed to predict from constant stress tests in 
[4, 5] the creep and plastic behavior under these complex 
stress changes. 

A subsequent paper will describe creep and plastic strains 
under stress reversal in torsion with and without simultaneous 
tension for the same material and test conditions as in the 
present paper. 

Material, Experimental Apparatus, and Procedure 

Type 304 stainless steel, reference heat no. 9T2796 supplied 
by Oak Ridge National Laboratory, was reannealed and 
machined into thin-walled tubes. The material and specimen 
are the same as described in references [4-6]. 

The combined tension and torsion machine using dead 
weight loading was described in [10]. Specimens were soaked 
at the testing temperature of 593 °C (1100°F) for 20 h prior to 
loading, which was accomplished in less than 10 sec. Ad
ditional details are given in references [4-6, 10]. 

Experimental Results 

Creep-time curves are shown in Figs. 1-5 for combined 
tension a and torsion j and Fig. 5 includes step changes in 
pure torsion stress. An insert on each figure shows the overall 
test program and the resulting total strain. Figures 1-4 show 
results of two combined tension and torsion experiments C41 
and C49 in which a proportional loading was applied for 100 
h in period 1 followed by recovery at zero stress in period 2. 
The results in periods 1 and 2 were employed in [4, 5] in-
determining the constants for the nonlinear and linear por
tions, respectively, of the stress functions. Since periods 1 and 
2 were fully described in [4, 5], results in those periods are not 
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Fig. 1 Test no. C41 . Axial strain (CA41) for combined tension and 
torsion creep of 304 stainless steel at 593°C under side step-up and 
side step-down stress changes following complete unloading. Num
bers 3 -12 indicate periods on insert. Scales are X = 30h, Y = 0.01 
percent for periods 3-5 , 9, 10; X = 30h, Y = 0.08 percent for periods 
6-8; and X = 60h, Y = 0.01 percent for periods 11 ,12 . 
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Fig. 2 Test no. C41. Shear strain (CT41) for combined tension and 
torsion creep of 304 stainless steel at 593°C under side step-up and 
side step-down stress changes following complete unloading. Num
bers 3-12 indicate periods on insert. Scales are X = 30h, Y = 0.01 
percent for periods 3-5; X = 30h, V = 0.08 percent for periods 6-9; and 
X = 60h, Y = 0.01 percent for periods 10-12. 

shown in this paper. Following periods 1 and 2 there were 
sequences of side steps up then down in which one stress 
component was held constant while the other was increased or 
decreased. The effect on the creep corresponding to one 
unchanging stress component of an increase or decrease in the 
other component was described in detail in a subsequent 
section in which the predictions of theory are compared with 
the test data. 

Figure 6 shows the loading history during each test together 
with the strain trajectories for a selected group of periods for 
which the current stresses all have the same ratio of tension to 
torsion but have different prior stress histories. The direction 
of the strain trajectory (or direction of the strain rate vector) 
for the first loading of C 41-1 is very nearly that of the normal 
to the Mises ellipse at the stress point (except for a jog in the 
curve) (see Figs. 1 and 2 of [4] for creep curves for period 1). 
For conditions having prior nonproportional stress histories, 
plastic strain during current loading and a considerable 
current creep strain rate (C41-8 and C49-5) the strain 
trajectories nearly coincide with the Mises normal. For 
conditions having prior nonproportional stress histories, no 
current plastic strain, and low creep rates (C41-4 and C41-6) 
the direction of the strain trajectory starts more toward the 
direction of the most recent change in stress then changes 
direction toward the Mises normal. C52-3 also follows this 
pattern but has high creep rate and current plastic strain on 
loading, but the prior history involved unloading. 

Constitutive Equations for Combined Tension and 
Torsion 

The total strain at constant stress was resolved into the 

following components: elastic strain eE, time-independent 
plastic strain efj, time-dependent recoverable (viscoelastic) 
strain e,y£, and time-dependent nonrecoverable (viscous) 
strains ejj. The time dependence was found to be describable 
as a power of time t". Thus 

eu = efj + erj + e5VEt"+4vt", (1) 

where eE, efj, e<+ VE, and ejj v are functions of stress. The stress 
dependence of efj, ejjVE, and €,•+ v was described, for constant 
stresses above a transition level, in accordance with a third-
order multiple integral representation [11]. In [4] it was shown 
that there was an apparent limit stress for ejj VE and ejj v as 
well as a yield limit for efj. Incorporating a limit stress, the 
stress dependence of these terms for combined axial and shear 
(torsion) stresses had the following forms for the axial eu and 
shear e12 strain components, 

en=F(a,T) = Fl(a-a')+F2(a-a')2+FJ(a-a')i 

+ F 4 ( < 7 - < 7 ' ) ( T - T ' ) 2 + F 5 ( T - 7 ' ) 2 , (2) 

e12 = G(ff,r) = G l ( T - r ' ) + G 2 ( T - r ' ) 3 

+ G 3 ( o - a ' ) 0 - r ' ) + G4(cr- a ' ) 2 ( r - T'), (3) 

where e^, F, G, a', and T' assume superscripts P, VE, or V 
according to whether plastic P, viscoelastic VE, or viscous V 
strains are being described, and where a' and T' are the 
components of the plastic or creep limits. F(O,T) = G{O,T) = 0 
for -a' < a < a', — r ' < T < T'. As shown in [4] these 
limits were describable by a Mises relation and were 
calculated from the limits for pure tension a* and/or pure 
torsion T* . The values of F, G, a*, and T* are given in Table 1 
of reference [4] for each of the three strain components efj, 
efjE, and efj. 
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Fig. 3 Test no. C49. Axial strain (CA49) for combined tension and 
torsion creep of 304 stainless steel at 593°C under side step-up and 
side step-down stress changes following complete unloading. Num
bers 3 -9 indicate periods on insert. Scales are X = 40h, Y = 0.02 
percent for periods 3-5; X = 40h, Y = 0.007 percent for periods 6 ,7 ; and 
X = 60h, Y = 0.007 percent for periods 8, 9. 
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Fig. 4 Test no. C49. Shear strain (CT49) for combined tension and 
torsion creep of 304 stainless steel at 593°C under side step-up and 
side step-down stress changes following complete unloading. Num
bers 3-9 indicate periods on insert. Scales are X = 40h, Y = 0.007 
percent for periods 3,4, 7-9; and X = 40h, V = 0.02 percent for periods 
5,6. 

Below a transition stress it was shown in [5] that the 
behavior was essentially linear and nonsynergistic. Thus the 
strain components in this stress range were given by 

in 

«12 

= F(O,T)=F0O, a < a7 (4) 
= G(O,T) = G0T, T<TT, (5) 

where, aT and TT are the transition stresses and where 
the values of F0, G0, a

T, and rT for eft VE and e,y v were deter
mined as shown in the text of reference [5]. 

Constitutive Equations for Variable Stress 

Plastic Strain. The time-independent strain at each stress 
change in Figs. 1-5 consisted of the sum of the elastic efj and 
plastic efj strains. Plastic strain occurred on initial loading to 
stresses above the yield limit in accordance with equations (2) 
or (3) with superscripts of P. On subsequent loading, plastic 
strain was considered to occur only when stressed higher than 
the previous maximum. The new plastic strain increment was 
computed by equations (2) or (3) minus the plastic strain 
accumulated prior to the current loading. No interaction 
between the plastic and time-dependent strains was considered 
in the present analysis. Aging was found to have a con
siderable effect of reducing plastic strain [5]. Aging was in
cluded in equations (2) and (3) by multiplying each term by 
gp (ts) as given in [6], 

Viscoelastic and Viscous Strain. Employing the modified 
superposition principle (MSP) [11] the viscoelastic strain 
e^E for a continuously varying stress is given by 

Test 
(F ig . No.) 

CA41 

(F ig . 1) 

and 

CT41 

(F ig . 2) 

CA49 

(F ig . 3) 

and 

CT49 

(F ig . 4) 

C52 

(F ig . 5) 

Table 1 

P
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d
 

1 
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8 
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11-

12 

1 

2 

3 

4 

5 

6 

7 

8 
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1 

2 

3 

* 

Total time 

Change i n 

Tension, o 
MPa ks i 

73.3 

- 7 3 . 3 

61.1 

0.0 

12.2 

0.0 

12.2 

0.0 

- 2 4 . 4 

0.0 

- 6 1 . 1 

0.0 

24.4 

- 2 4 . 4 

33.8 

0.0 

27 .3 

- 2 7 . 3 

0.0 

- 3 3 . 8 

0.0 

0.0 

0.0 

61.1 

0.0 

10.628 

-10 .628 

8.857 

0.0 
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0.0 
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0.0 

independent strain data 
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0.0196 

-0 .0164 

0.0232 

0.0139 
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percent 
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Fig. 5 Test no. C52. Axial (CA52) and shear (CT52) strain for combined 
tension and torsion creep of 304 stainless steel at 593°C under side 
step-up and side step-down stress changes following a step-down 
stress change in pure torsion. Numbers 1-4 indicate periods on insert. 
Scales are X = 20h, Y = 0.015 percent for periods 3A, 44, axial strain; X 
= 35h, Y = 0.06 percent for period 1T; and X = 35h, V = 0.015 percent 
for periods 2T-4T, shear strain. 

-i: d<r(£) 
(6) 

The nonrecoverable viscous strain efj was described by a 
strain-hardening (SH) relation having the following form for 
axial strain, 

Jo <F><0. rmV'dk (7) 

For the third step of a three-step sequence with stress 
changes at /, and t2, equations (6) and (7) yield the following 
[11] after introducing the aging functions as found in [5], 

e [ f ( 0 = gVE(20)F^(ai,Tl)[t"-(t-tlr] 

+ gVE{20 + tx)F
VE{o2,TMt-tl)

n-(.t-t2r] (8) 

+ gVE(2Q + t2)F
VE(ai,T,)(t-t2)\ t2<t, 

wheregVE{ts) = 1.5197 ts ~
0-1397, andgVE{ts) = 1 at ts = 20 h. 

e{i(0 = gVW + h)[{[t\l(.t2)Y
/" + [Fv{o„Ti)Y

/»(t-t2)\» 

~ eft (f2)] +e i i t e ) , (9) 
where 

e?dt2) =gV(20 + tl)[i[e?i(tt)]
W" 

+ [Fv(o2.T2)]1"'(t2-tl))»-eYl(t1y\ + eYi(ti) 

efi(?,) = gv(20)l[Fv(ai,Tl)]
l/"tl)", 

gv(ts) = 1.8293 ^-°-2oi6 andgv(ts) = 1 at ts = 20 h. 

Similarly, e\2 was obtained by replacing F(<J,T) by G(O,T) in 
equations (8) and (9). 

Comparison of Predictions and Test Data 

The time-independent strain (ej} + e£) and the time-
dependent strain {eff + e,y) were treated separately in com-

in 

DC 
D 

-2 
CHI (FIG. 1,2) CH9 (FIG.3,1) 

TENSION STRESS 

1 1 

C 5 2 ( F I G . 5 ) 

AXIAL STRRIN 

Fig. 6 Stress path diagram (the dot indicates the zero stress state and 
the numbers indicate loading periods) and strain trajectories (e12 

versus e^) 
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Table 2 Plastic strain 

1 1 Change In Stress 1 1 1 Plastic Strain 
Test, Stralnl 1 1 ! 1 1 1 1 

Component 1 "̂  1 Tension, a 1 Torsion, T 1 Aging 1 Aging 1 Data, 1 Prediction | Prediction with Aging, % 
(Fig. No.) 1 Tj 1 MPa 1 ksi 1 MPa | ksi 1 Time, 1 Factor*, 1 X 1 without , 1 Pure 1 Mixed | Total 

1 " 1 1 1 1 1 t s , h ! g P ( t s ) 1 1 Aging, % 1 Term 1 Terra 1 
I I I 1 1 1 1 1 1 1 1 1 

. . . . 1 1 1 1 1 1 1 I I I I I 
' E l l 1 1 1 73.3 1 10.628 | 42.1 | 6.111| 20 | 1.000 1 0.3847 | 0.4075 1 0.1933 1 0.2141 | 0.4075 

(Fig. 1) 17 1 12.2 | 1.771 1 0.0 | 0.0 1 558 1 0.680 1 0.0401 | 0.2888 1 0.1167 1 0.0799 1 0.1965 

1 8 | 0.0 | 0.0 | 7.-1 1 1.0191 605 1 0.674 1 0.0575 1 0.3014 1 0.0529 1 0.1501 | 0.2030 

1 1 1 1 1 1 1 I I I I I 
Cm. . p i l l 1 1 1 1 1 1 1 1 1 

' 12 1 1 1 73.3 | 10.628 1 42.1 | 6.1111 20 | 1.000 1 0.3186 | 0.3207 1 0.1818 | 0.1389 1 0.3207 

(Fig. 2) 1 7 1 12.2 | 1.771 1 0.0 1 0.0 1 558 1 0.680 1 0.0275 1 0.1465 1 0.0235 | 0.0761 | 0.0997 

I 8 | 0.0 | 0.0 | 7.1 | 1.0191 605 1 0.674 1 0.0530 1 0.2302 | 0.0819 1 0.0731 1 0.1550 

1 1 1 1 1 1 1 I I I I I 
CA49 E 1 1 1 1 1 1 1 1 1 1 1 1 

' 11 14 1 0.0 1 0.0 | 15.6 | 2.2701 312 | 0.728 | 0.0139 1 0.0350 1 0.0223 | 0.0032 | 0.0255 

(Fig. 3) 1 5 1 27.3 | 3.948 1 0.0 1 0.0 I 360 1 0.716 I 0.0636 I 0.1040 I 0.0397 1 0.0346 1 0.0744 

1 1 1 1 1 1 1 I I I I I CI49 c 1 1 ! 1 1 1 1 1 1 1 1 1 
' 12 14 1 0.0 | 0.0 | 15.6 1 2.2701 312 | 0.728 1 0.0214 1 0.0405 1 0.0283 1 0.0011 | 0.0295 

(Fig. 4) 1 5 1 27.3 1 3.948 1 0.0 | 0.0 | 360 | 0.716 | 0.0506 | 0.0802 | 0.0339 1 0.0234 | 0.0573 

1 1 1 1 1 1 I I I I I 1 1 1 1 1 1 1 I I I I I 
CA52, c | 3A | 61.1 | 8.857 1 0.0 1 0.0 | 188 | 0.771 1 0.0807 | 0.1390 1 0.0665 1 0.0407 1 0.1072 

CT52, E | IT | 0.0 1 0.0 | 49.8 1 7.2171 20 1 1.000 1 0.1180 | 0.1480 1 0.1480 | 0.0 | 0.1480 

(Fig. 5) 1 3T 1 61.1 1 8.857 1 0.0 1 0.0 1 188 | 0.771 | 0.0202 | 0.0343 1 0.0 1 0.0264 | 0.0264 

1 1 1 1 1 1 1 I I I I I 

1.4147 t -0.1158 

paring predictions with experimental data. The predictions of 
time-independent strain were obtained by adding the current 
elastic strain tE to the plastic strain efj calculated as described 
previously using constants shown in references [4, 5]. The 
predicted time-dependent strains were obtained as the sum of 
equations similar to equation (8) plus equations similar to 
equation (9) using constants given in Table 1 of reference [4]. 
All constants were obtained from constant stress creep and 
recovery data only, as reported in [4, 5]. 

The predicted results of the V-Vtheory as in the foregoing, 
together with actual test data are shown in Figs. 1-5. Theory 
is shown by dash lines. If the theory curves are the same as the 
improved theory curves described later, only solid lines are 
shown. For comparison of the predictions with the test data, 
the time-dependent creep strain data were extracted from the 
measured total strain as described in [6]. This approach made 
the first data point following each load change coincide with 
the theory at the time of the first reading. It is noted that for 
some continuous sequences of periods such as periods 6-8, 
Fig. 1, the time-dependent strains only are connected for each 
period, and the comparison between theory and data are 
based on each individual periods - rather than the ac
cumulated effect. 

Also the data for the time-independent strain at each stress 
change was obtained as the amount of strain change from the 
last data point of the previous period (just before load 
change) to the zero time data of the creep strain of the current 
period (just after load change) corrected as described in [6]. 
The resulting time-independent strain data are shown in the 
seventh and eighth column of Table 1 for axial and shear 
strains, respectively. The data for plastic strain shown in 
column 9, Table 2, was obtained by the total time-
independent strain minus the elastic strain. The predictions of 
time-independent plastic strain by equations (2) and (3) 
without and with aging are given in Table 2. The numbers 
given as ordinates in Figs. 1-5 indicate the total strain of the 
first data point shown. 

Modifications of (V- V) Theory 

From the comparisons of the theory with test data, shown 
in Figs. 1-5, substantial disagreements between theory and 
data were found for the cases of side step-down stress changes 

as in periods 9 and 10, Fig. 1, and periods 6 and 7, Fig. 3, 
where the creep data increased at a reduced rate, but the 
predicted strain decreased. 

As in [6] for partial unloadings in pure tension or pure 
torsion, the following similar revisions were made to improve 
the predictions for side step-down stress changes. 

Equation (8) represents an open form in so far as stress 
changes are concerned. For example \FVE(a1,ri)-
FVE(a2,T2)}(t-tl)" is an open form. The open form was 
found satisfactory [6] for increasing steps of stress com
ponents. However, as shown in [6] a closed form was required 
for decreasing steps in stress. For example, FVE(o\ -O2,TX -
r2)(t - tx)" is the closed form employed. 

The revised superposition principle (RSP) employing the 
closed form on decreasing steps of stress involving partial 
unloading yields the following for three steps of unloading 
equivalent to equation (8), 

effW = gVE (20) F^^^t" 

- gVE(20)FVE(al-(r2,rl-T2)(t-tir 

- gVE(20 + ti)F
VE(al-a3yTl-T,)(t-t2)" 

- gVE(20 + t2)F
VE(o2-o4,T2-T4)U-t3)". (10) 

In equation (10) for a series of partial unloadings FVE(a\ -
CT3,r1-T3) was used instead of FVE(a2 -oi,r2 — T3) for the 
second step-down, etc. That is, the creep recovery for all but 
the first step down of a series of step downs in stress was 
calculated on the basis of stress changes from one step before 
the previous to the current stress, as described in [6]. 

Also further considerations were made on the computation 
of FVE(a,r) for step-down stress changes by separating the 
pure stress terms and the mixed stress terms in equations (2) 
and (3). For example, when a decreased while T remained 
constant, FVE(O,T) was calculated only by the pure stress terms 
(<7,<T2,<T3) neglecting the mixed stress terms (CTT2,T2); and 
GVE(O,T) was calculated only by the mixed stress terms 
(OT,O2T) neglecting the pure stress terms (T,T3). 

The preceding calculations are an approximate com
pensation for the difference in behavior between side step-
down stress changes versus step-down stress changes when 
both a and T decreased at the same time. 

The new predicted time-dependent strains (RSP) were 
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obtained as the sum of equations similar to equation (9) plus 
equations similar to equation (8) when the stress increased or 
equation (10) (separating pure and mixed stress terms) when 
the stress decreased. The (RSP) curves are shown as solid lines 
in Figs. 1-4 and periods \T-AT, Fig. 5. 

As shown in Figs. 1-5, the revised superposition principle 
(RSP), equation (10), improved the overall predictions 
considerably compared to the (MSP), equation (8), for side 
step-down stress changes under combined tension and torsion. 
All characteristics of the experimental time-dependent data 
are displayed by the theory and the predicted values are 
reasonably close in most instances. 

On complete removal of one stress component while the 
other remained constant, the creep component corresponding 
to the stress that did not change showed no change in period 8, 
Fig. 4, but showed a lower rate in period 11, Fig. 2, and 
period 4^4, Fig. 5. The predictions of the theory using (RSP) 
are close to the data. These results in Fig. 2 and 5 differ from 
the behavior of 2618 aluminum [3] in which several ob
servations showed no change in creep rate of the strain 
component whose stress component was not removed. 

When one stress component was reduced (not removed) 
while the other component remained constant the creep rate 
of the component corresponding to the constant stress 
component was reduced. The creep rate predicted by the 
theory using (RSP) was close to but less than that of the 
observed test data in periods 10, Fig. 1, and 9, Fig. 2. This 
behavior also differs from that observed under similar cir
cumstances for 2618 aluminum [3], where no change was 
found in the creep rate of the component of creep 
corresponding to the stress component that was not reduced. 

Effect of Prior Yielding 

In periods 3 and 4, Figs. 1 and 2, tension was applied for a 
period then torsion was added with no change in tension. In 
these instances there was no plastic strain during these 
loadings (because higher stresses had been sustained 
previously). In period 4, Fig. 2, the theory predicts a 
somewhat lower creep rate than observed. In the similar 
instances, period 3A, Fig. 5, tension was added with no 
change in torsion. In this loading there was a substantial 
plastic strain as shown in Table 2. The (V-V) theory shown by 
a dashed line in period 3^4, Fig. 5, predicts much greater creep 
than observed. This is apparently due to plastic flow during 
the prior torsion loading (period 1T, Fig. 5). In period 4, Fig. 
4, there was no prior plastic flow and the predicted creep rate 
was about the same as the observed. 

As a partial correction for the effect of the prior plastic 
flow under a different state of stress, the theory for period 
3A, Fig. 5, was recalculated as shown by a dot-dash line by 
considering only the pure tension terms a, a2, o3. Clearly this 
change is insufficient to account for the work hardening 
caused by prior plastic flow under a different stress state. 
Further work on the effect of prior plastic flow on subsequent 
creep is needed. 

Plastic Strains 

The side-step change of stress in period 4, Figs. 3 and 4 
(Test C49), may be considered to be equivalent to an initial 
proportional loading as far as plastic strain is concerned since 
the prior loadings were all below the yield limit. The predicted 
plastic strains for periods 4 and 5 of test C49, Table 2, were 
close to the experimental data as was also true of period 1, test 
C41. However, the latter would be expected as the data of 
period 1, Test C41, were employed in [4] to determine the 
constants used in the prediction. 

Nonproportional loading, as in abrupt changes of com

bined tension and torsion, which cause additional yielding 
under a different stress state, may involve changes in the size 
and shape of yield surface [12, 13] and accordingly changes in 
plastic flow conditions. This may account for the poor 
agreement between the predictions of plastic strains and the 
test data for periods 7 and 8 of Test C41, Table 2. Another 
contributing factor may have been the rather large plastic 
strain in period 1, Test 41. Another observation may be drawn 
from these data. The plastic strain corresponding to the pure 
stress terms may be separated from that for the mixed stress 
terms in equations (2) and (3) as shown in Table 2. Comparing 
the test data for periods 7 and 8 of Test C41, Table 2, with the 
calculated plastic strain components for pure stress and mixed 
stress terms as shown in Table 2 yields the following 
correlations. For an increase in a with constant T (periods 6 to 
7) the data for ef, was close to the prediction for the mixed 
stress terms. But for an increase of T with constant a (periods 
7, 8) efj was close to the prediction by the pure stress term. 
Similarly for an increase of T with constant a (periods 7, 8) the 
data for ef2 was close to the prediction by the mixed stress 
terms. But for an increase in a with constant T (periods 6, 7) 
ef2 was close to the prediction by the pure stress terms. No 
similar correlation was found for period 5 of Test C49, Table 
2, where the total plastic strain was small compared to that in 
TestC41. 

Conclusions 

Analysis of creep data of 304 stainless steel at 593 °C 
(1100°F) under combined tension and torsion for varying 
stress history including side step-up and side step-down stress 
changes showed that a viscous-viscoelastic model with certain 
modifications and aging effects predicted most of the features 
of the observed creep behavior reasonably well. 

For recoverable time-dependent (viscoelastic) strain side 
step-up stress changes were described by an open form for 
stress differences whereas side step-down stress changes were 
described by a closed form for stress differences. 

For nonrecoverable time-dependent (viscous) strain the 
prior plastic flow under one stress component preceding 
application of the other stress component caused a con
siderable reduction of the subsequent creep due to the other 
stress application. 

Time-independent plastic strains were described reasonably 
well by a flow rule of form similar to that employed for 
nonrecoverable time-dependent strains. But the plastic flow 
on side step-up stress changes needs further study including 
determination of changes in yield surface. 
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Creep and Plastic Strains Under 
Stress Reversal in Torsion With 
and Without Simultaneous Tension 
for 304 Stainless Steel at 593°C 
Results of creep experiments under stress reversals in torsion with and without 
constant tension are reported. Constitutive equations based on data for single step 
creep and creep recovery tests previously reported are used to describe the test 
results. A viscous-viscoelastic model with aging effects and modifications for step-
down stress changes and stress reversals predicted the creep behavior reasonably 
well. The prediction of time-independent plastic strains is also described. 

Introduction 

Results of creep experiments under combined tension and 
torsion on 304 stainless steel at 593°C (1100°F) have been 
reported by the authors. Creep and creep recovery data at 
moderate stresses [1] and low stresses [2] together with aging 
experiments [2] provided information on the creep charac
teristics of the material. A nonlinear viscous-viscoelastic 
model [1, 2] was employed in describing the creep charac
teristics. This information was then used together with a 
strain-hardening concept for nonrecoverable time-dependent 
strain and viscoelastic behavior for recoverable time-
dependent strain to predict creep and plastic strains under step 
changes in stress with aging [3], In another paper [4], creep 
and plastic strains were predicted for combined tension and 
torsion creep involving nonproportional step changes in stress 
including increasing or decreasing one stress component while 
the other component remained constant. These predictions 
were compared with actual test data. 

In the present paper results of creep tests consisting of 
reversals of torsion stress with and without simultaneous 
tension are reported. Partial reversal and overreversal of 
stresses were also included. These results are compared with 
predictions based on results of the constant stress creep and 
creep recovery tests just described. 

In all of this work, the experiments were performed on 
specimens from the same lot of steel: the "reference heat 
9T2796." A study of the microstructure of the same reference 
heat of 304 stainless steel over a wide range of temperature 
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and stress was reported in [5-7]. Earlier work on creep of 2618 
aluminum under stress reversals in torsion was reported in [8]. 

Material, Experimental Apparatus, and Procedure 

Type 304 stainless steel, reference heat no. 9T2796 supplied 
by Oak Ridge National Laboratory, was reannealed and 
machined into thin-walled tubes. A description of the 
material and specimens is given in references [1-3]. The 
material used is the same as in references [1-4]. 

The combined tension and torsion machine using dead 
weight loading was described in [9]. The specimen was soaked 
at the testing temperature of 593°C (1100°F) for 20 h prior to 
loading, which was accomplished in less than 10 sec. Ad
ditional details are given in references [1-3,9]. 

Experimental Results 

Three creep experiments, which include stress reversals in 
torsion, are shown in Figs. 1-3. The loading programs and 
resulting total strain-time data are shown as inserts in Figs. 
1-3. 

Data and theory for periods 1-4 of Fig. 1 were reported in 
[4]. When torsion was reversed in period 5 with no change in 
tension new plastic strain occurred in tension (and torsion) 
followed by new primary creep whose time-dependent strain 
was nearly the same as that in period 3, Figs. 1(a), (b). During 
tensile recovery in periods 6 and 7 of Fig. 1(a), a new primary-
type accelerated strain recovery in "tension" resulted when 
the reversed torsion was increased in period 7. On removal of 
tension in period 6 of Fig. 1(b) there was a small reduction in 
shear creep rate (negative). 

The tensile strain under constant tension in Fig. 2(a) 
showed new plastic strain and considerable new primary creep 
when torsion was added in period 2. Under constant tension 
but reversing torsion in periods 3-5 the tensile strain showed 
new plastic strain and small new primary creep at each 
reversal of torsion. On removing tension while maintaining 
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Fig. 1(a) Test no. 52. Axial strain for combined tension and torsion 
creep of 304 stainless steel at 593° C under step-up and step-down 
stress changes including stress reversal in torsion with constant 
tension. Numbers 3-7 indicate periods on insert. Scales are X = 20 h, 
V = 0.015 percent for periods 3-5, and X = 20 h, Y = 0.01 percent for 
periods 6 and 7. 

Fig. 

TIME, HOURS 

Fig. 1(f)) Test no. 52. Shear strain for combined tension and torsion 
creep of 304 stainless steel at 593°C under step-up and step-down 
stress changes including stress reversal in torsion with constant 
tension. Numbers 1-7 indicate periods on insert. Scales are X = 35 h, 
V = 0.06 percent for period 1; X = 35 h, V = 0.015 percent for periods 2-4; 
and X = 25 h, Y = 0.03 percent for periods 5-7. 

. 1 

torsion constant in period 6, tensile recovery occurred at a 
rate that was slightly increased when torsion was removed in 
period 7. 

In Fig. 2{b), plastic strain in torsion occurred on adding 
torsion to the constant tension and on each reversal of tor
sion. The complete reversal of torsion in periods 2 and 3 
resulted in nearly identical time-dependent creep strain in each 
period (but of opposite sign). Similarly, the time-dependent 
creep in periods 4 and 5 were nearly identical, but showed less 
creep than periods 2 and 3. In other words, positive creep in 
period 4 was affected by the prior positive stressing in period 2 
and similarly, period 5 was affected by period 3 stressing. But 
apparently prior positive creep, period 2, did not affect 
negative creep in period 3, and similarly for periods 4 and 5. 

The pure torsion stressing in Fig. 3 again showed nearly 
identical time-dependent creep between the first stressing in 
period 1 and the first complete reversal in period 2. It was also 
observed that the creep in period 6 at the same stress as in 
periods 1 and 2 but following period 5 at a higher stress was 
only slightly less than that observed in periods 1 and 2. Plastic 
strain occurred at each stress reversal in Fig. 3. 

Analysis 

The total strain at constant stress was resolved into the 
following components: elastic strain ef, time-independent 
plastic strain e(j, time-dependent recoverable (viscoelastic) Viscoelastic Strain e,y£ 

material by a power function of time with a constant exponent 
A [1], Thus, 

s f + e , t » V , (1) e'j ~ eU "•" €U "•" eij ' ' •=(/ 

where efj, ey, ejjVE, and e,jV are functions of stress. As shown 
in [1, 2] the stress dependence of eyVE and e$v was described, 
for constant stresses above a transition level, in accordance 
with a third-order, nonlinear, multiple integral representation 
[10], and below the transition stress, it was described by a 
linear relation. The constants of the relations were obtained 
from a series of constant-stress creep and creep recovery 
experiments under combined tension and torsion. This in
formation was used in predicting the creep behavior under 
variable stress in [3, 4] by a method summarized in the 
following. 

Plastic Strain tfj. Plastic strain occurred on initial loading 
to stresses above the yield limit, see [1, 3]. On subsequent 
loading, plastic strain was considered to occur only when 
stressed higher than the previous maximum. The new plastic 
strain increment was computed by equations (2) and (3) of 
reference [4] minus the plastic strain accumulated prior to the 
current loading. No interaction between the plastic and time-
dependent strains was considered in the present analysis. 
Aging considerably reduced the plastic strain. Aging was 
included as shown in equation (16) of reference [3]. 

strain efj, and time-dependent nonrecoverable (viscous) 
strain efj with independent positive and negative parts. The 
time dependence was found to be well represented for this steps of stress, for example, 

,j . Employing the modified super
position principle (MSP) [10], the strain for a series of steps 
in stress is described as follows for axial strain eff for three 
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e^(0 =gVE(20) FVE (aun) [t" - U-ti)"] 

+ gVE (20 + ?,) FVE(O2,T2) Ht-t1r -(t-h)»] (2) 
+ gVE (20 + t1)F

VE(ai,T,){t-t2)",t1<t, 
where t is the time measured from first load application, and 
where the following aging function was introduced, 
gVE(ts)= 1.5197 ts~

omi, equation (12) of [3], where 
gVE(ts) = latt = 20h. 

F 0.07m 

0.2739 

0.3209 

TORSION 35.1 35. 1 
STRESS, r ~ • 
MPfl I 
PERIOD 1 2 

-"3571 

5 6 

•35.1 

0 95 193 288 
18 1H3 237 

TIME, HOURS 

T I M E , HOURS 

Fig. 2(a) Test no. 53. Axial strain for combined tension and torsion 
creep of 304 stainless steel at 593°C under stress reversals in torsion 
with constant tension. Numbers 1-7 indicate periods on insert. Scales 
are X = 30 h, Y = 0.02 percent for periods 1-5, and X = 35 h, Y = 0.015 
percent for periods 6 and 7. 

Viscous Strain c,y. The nonrecoverable (viscous) strain 
was described by a strain-hardening (SH) relation for a series 
of m steps in stress after introducing the aging function 
gv(ts)= 1.8293 ^-° - 2 0 1 6 from equation (13) of [3]. For 
example, for the third step of a three-step sequence with stress 
changes at tt and t2 the nonrecoverable strain was, 

eY1(t)=gvQQ + t •)[{uriit2)Y 

+ [Fv(a3,T,)]l/"(t-t2)]j" - e t o l j + e f i t e ) , (3) 

where 

eri«2) = gV(20 + tl)[{[eri(tl)]
l/" 

e,Ki 

+ lFv(a2,T2)]
1/"(t2~-tl)^ ' -er i ( / i ) ] ]+er i ( / i ) , 

(tl) = gv(20)[[Fv(oUTl))
w"t]]" • 

In equations (l)-(3) the stress functions F and G include 
both the linear and nonlinear regions as described in [4]. 

Modification of t,y for Stress Reversal. On stress 
reversals, as in period 5, Fig. 1, periods 3-5, Fig. 2, and 
periods 2-6 of Fig. 3, the nonrecoverable (viscous) shear 
strain e\2 was considered as if the reversed stress were applied 
to a new specimen at each stress reversal, i.e., all the prior 
strain hardening was erased so that it had no effect on theK 

subsequent shear creep strain. Summing this primary-type 
creep for e\2 as in the foregoing and t\2

E by equation (2), and 
accounting for aging, yielded the predictions for time-
dependent strain on stress reversals shown by dashed lines in 
the figures. Where the curves are the same as theory curves 
described later, only solid lines are shown. The results showed 
some substantial disagreements between data and theory for 
all cases except periods 2 and 3 of Fig. 3. Some revisions were 
made to improve the predictions as follows. 

Revision (RSP) of (MSP) for Side Step-Down. Equation 
(2) represents an open form in so far as stress changes are 
concerned. For example [FVE(a{, r,) - FVE (o2, T2)](t-ti)n 

is an open form. The open form was found satisfactory [3, 4] 
for increasing steps of stress. However, as shown in [3, 4] a 

TENSION 
STRESS, 
MPfl 
TORSION 
STRESS, 
HPR 
PERIOD 

35. 1 35. 1 

i a I 31 u~p 

0 95 193 288 105 
W 1143 237 

TIME, HOURS 

-ms—mr~ra—cni 
7 

TIME, HOURS 
Fig. 2(b) Test no. 53. Shear strain for combined tension and torsion 
creep of 304 stainless steel at 593°C under stress reversals in torsion 
with constant tension. Numbers 2-7 indicate periods on insert. Scales 
are X = 45 h, Y = 0.033 percent for periods 2-7. 

Fig. 2 
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<r> 0.1627 

TORSION I 
STRESS, 
MPA I 

SHEAR 
STRAIN, 

-H9.8 -M.B -119.1 

5 , 

Hil l 287 132 552 
72 216 360 

TIME, HOURS 

° ^6 

TIME, HOURS 
Fig. 3 Test no. 50. Shear strain for pure torsion creep of 304 stainless 
steel at 593°C under stress reversals. Numbers 1-7 indicate periods on 
insert. Scales are X = 70 h, Y = 0.087 percent for periods 1 -7. 

closed form was required for decreasing steps in stress. For 
example, FVE(al-a2, T\-TI) (t-t\Y is the closed form 
employed. 

The revised superposition principle (RSP) employing the 
closed form on decreasing steps of partial unloading yields the 
following for three steps of unloading equivalent to equation 
(2), 

en(t)=gVE(20)FVE(aUTl)t" 

-gVE(20)FVE(ol-o2,Tl-T2)(t-t1)" 

-gVE(20 + tl)F
VE(a,-a„Tl-ri)(t-t2)" 

-gVE(20 + t2)F
VE(a2-o„T2-n)(t-(,)". (4) 

In equation (4) for a series of partial unloadings, FVB (ai -
03>7"i-r3) was used instead of FVE (a2 -OJ,T2 — T3) for the 
second step-down, etc. That is, the creep recovery for all but 
the first step-down of a series of step downs in stress was 
calculated on the basis of stress changes from one step before 
the previous to the current stress, as described in [3, 4], Also 
the computations of FVE (O,T) and GVE (O,T) were made by 
separating the pure stress terms and the mixed stress terms in 
equations (2) and (3) of reference [4] as explained in [4]. The 
new predicted time-dependent creep strains (RSP) were ob
tained as the sum of equations similar to equation (3) plus 
equations similar to equation (2) when the stress increased, or 
equation (4) (separating pure and mixed stress terms) when 
the stress decreased. The (RSP) curves are shown as solid lines 
in periods 2, 4, and 6, Fig. 1, and periods 6 and 7, Fig. 2. 
These showed generally better predictions than the (MSP) for 
side step-down stress changes under combined tension and 
torsion as also found in [3] for step-down stresses. 

Comparison With Time-Dependent Strain 

Stress Reversal in Pure Torsion. On stress reversal in pure 
torsion, as in periods 2-6 of Fig. 3, the good agreement 
between data and theory for periods 2 (complete reversal), 3, 
and 6 (partial reversals) supported the assumption that there 
was no effect of prior strain hardening on tv at each sub
sequent stress reversal. But the data of period 4 was much 
smaller than the prediction (dashed line) and period 5 showed 
a much larger strain rate than predicted. Those observations 
yielded the following assumptions: (a) the same or larger 
magnitude of reversed stress than the previous stress erased all 
prior strain hardening in the opposite direction. For example, 
the reverse loading of period 2 erased the strain hardening 
during period 1 and the reverse loading of step 5 erased all the 
strain hardening during periods 2 and 4; (b) a partial stress 

reversal did not erase the prior strain hardening, i.e., the 
reverse loading of step 3 did not erase the strain hardening 
during period 2; and (c) the viscous creep strain t\2 after each 
stress reversal is not affected by any of the prior strain 
hardening in the opposite sense. 

According to the new assumptions (b) and (c), the 
calculation of t\2 for period 4 included the strain hardening 
during period 2 by using equation (3), because the strain 
hardening during period 2 was not erased by the partial stress 
reversal of step 3. This modification shown as a solid line 
yielded a much better prediction. This supports assumption 
(b). The solid lines for periods 5-7 are the same shape as the 
dashed lines shifted by the difference between curves at the 
end of period 4. The much larger strain data than predicted 
for period 5 was not explained by the preceding assumptions, 
which described all the other periods quite well. Some other 
factors must contribute to the creep in period 5 such as a 
change of the creep surface or yield surface resulting from 
stress reversals. 

Stress Reversal of Torsion With Constant Tension. The 
predictions by the original theory for the time-dependent 
strain are shown as dashed lines in period 5 of Fig. 1 and 
periods 3-5 of Fig. 2. As shown in Figs. 1 and 2, the actual 
shear creep rate was much smaller than predicted for these 
periods. The dashed lines were computed on the assumption 
that there was no effect of prior strain hardening on e\2 

following each stress reversal of torsion in the presence of 
constant tension. 

The first torsion loading, period 2 of Fig. 2(b), also showed 
the same order of disagreement between the theory and data 
as the subsequent stress reversals, periods 3-5. This ob
servation suggested that there was a defect in the theory for 
prediction of period 2 where torsion was applied following 
period 1 of axial creep under the intitial pure tension loading. 
That case could not be treated the same as simultaneous 
tension and torsion loading because of prior strain hardening 
accumulated during plastic and creep strains in the axial 
direction by the initial pure tension loading. The shear creep 
strain on torsion loading in the presence of constant tension 
appeared to have been affected by prior tension creep and 
plastic strain, which is known to occur for plastic strain on 
nonproportionate loading [11]. 

The effect of strain hardening under creep in pure tension 
on subsequent creep under combined tension and torsion was 
approximated in periods 2-5 of Fig. 2(b) and period 5 of Fig. 
1(b) by calculating e\2 from only the pure stress terms and 
considering no contribution from the mixed stress terms. 
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Similarly, for period 3 of Fig. 1(a), eft was calculated from 
only the pure stress terms as described in [4]. The predictions 
of this modified theory are shown as solid lines in the 
aforementioned periods of Figs. 1 and 2. The actual creep rate 
was still smaller than the predictions. Thus it appears that the 
preceding modifications are not sufficient to account for the 
effect of strain hardening during the prior plastic and creep 
strain under pure tension or pure torsion on the creep under 
the subsequent combined stress state as found also in [4]. 

In periods 3-5, Fig. 2(b), the same magnitude of torsion 
stress as the first loading was reversed at each stress reversal. 
In the preceding section, it was considered that stress reversal 
in each period erased the strain hardening during the previous 
period. But the data of periods 4 and 5 are smaller than that 
of periods 2 and 3 and the change is greater than expected 
from the theory considering aging. This observation suggests 
that the effect of strain hardening in the axial direction on the 
shear strain is not the same for every shear stress reversal in 
the presence of constant tension. This is because more strain 
hardening would be accumulated in the axial direction by 
constant tension, even if the prior strain hardening in the 
shear strain direction was erased by complete reversal of 
torsion. It may be noted that the assumption of no effect of 
prior strain hardening at each complete stress reversal found 
in pure torsion probably would be applicable to the case of 
simultaneous stress reversals of combined tension and tor
sion, but not sequential tension and torsion, as in the 
foregoing. 

If complete reversal to the same magnitude of shear stress 
erased the prior strain hardening only in the shear strain 
direction as discussed in the foregoing, the axial viscous creep 
strain, efi, under constant tension with stress reversals of 
torsion, as in periods 3-5, Fig. 2(a), should be calculated by 
including the effect of stress reversal. As shown in Fig. 2(a), 
the data of periods 3-5 showed new primary-type axial creep 
strain at each stress reversal of torsion, which supports the 
preceding observation. Therefore the effect of stress reversal 
of torsion on the axial viscous creep strain under combined 
tension and torsion was approximated in the theory in periods 
3-5 of Fig. 2 by calculating new eft at each stress reversal with 
no prior strain hardening. This new eft was calculated only 

for the mixed stress terms ai2, i2. The strain from the pure 
stress terms a, a2, and <J3 was calculated as continuous creep 
at constant a. This resulted in quite satisfactory predictions, 
shown as solid lines in Fig. 2(a). The same type modification 
was applied to period 5 of Fig. 1(a), which also resulted in a 
good prediction, shown as a solid line. 

Comparison With Plastic Strain 

Experiments on plasticity show that loading above the 
initial yield limit changes the whole yield surface in shape and 
size even by loading in only one direction [12]. 

The data for the time-independent strain at each of the 
stress changes were determined as described in [4] and are 
shown in Table 1. The predictions of plastic strain for stress 
reversals were calculated as in reference [4] with and without 
considering aging except with an assumption that there was no 
effect of prior yielding, i.e., as if the stress were applied to a 
new specimen at each stress reversal (see Table 1). 

Stress Reversal in Pure Torsion. The larger plastic strain 
observed in step 2 than predicted and larger than that of 
period 1 suggests that the yield limit for negative torsion 
decreased as a result of prior yielding under positive torsion. 
If period 2 (negative loading) did not change the yield surface 
for positive torsion, no plastic strain would have occurred on 
period 3, because the stress level of 3 was less than that of 1. 
But relatively large plastic strain did occur on step 3, which 
indicated that the yield surface for positive torsion had been 
lowered as a result of yielding under negative torsion in period 
2. In the same manner, the data of plastic strain on periods 
4-6 is consistent with a movement of the yield surface in 
response to each prior yielding. 

Considering the yield limit to be affected by prior yielding, 
the following inferences were obtained from the data at each 
stress reversal: (a) stress reversal to the same stress or higher 
stress magnitude than the previous stress (periods 1—2, 
periods 3—4, and periods 4 — 5 in Fig. 3) erased the prior 
yielding in the opposite direction (periods 1, 3, 4, respec
tively). Then the plastic strain on the subsequent stress 
reversal (periods 3, 5, and 6, respectively), may be ap-

T e s t 
( F i g . No. 

S t r a i n 
Component 

52 
( F i g . U ) 

E U 

52 
( F i g . IB) 

E 12 

53 
( F i g . 2A) 

E l l 

53 
( F i g . 2B) 

C12 

50 
( F i g . 3) 

E 12 

1 1 
>l„l 

Table 1 Total time-independent strain and plastic 

Change i n S t r e s s , 
T e n s i o n , o o r 

1.21 T o r s i o n , T 

ISI 

1 1 
| 3 | 
151 
161 
1 1 
1 1 
111 121 
131 
141 
151 
| 7 | 

1 1 
1 1 
111 
| 2 | 

131 
| 4 | 

151 
| 6 | 
1 1 
1 1 
121 
1 31 
141 
151 
| 7 | 
1 1 
1 1 
111 121 
| 3 | 

141 
151 
161 
171 
1 1 

I HPa 

a I 6 1 . 1 
T 1 - 3 5 . 1 
o 1 - 6 1 . 1 

T | 4 9 . 8 
t 1 - 1 4 . 7 
a | 6 1 . 1 
T | - 3 5 . 1 
T | - 3 5 . 1 
T | - 1 4 . 7 

o | 6 1 . 1 
I | 3 5 . 1 
t | - 7 0 . 2 
T | 70 .2 
T 1 - 7 0 . 2 
o 1 - 6 1 . 1 

t | 3 5 . 1 
T j - 7 0 . 2 
r 1 70 .2 
T | - 7 0 . 2 
I I 3 5 . 1 

r 1 4 9 . S 
* 1 - 9 9 . 6 
T | 89 .6 
T | - 8 9 . 6 
T | 109.5 
1 1-109.5 
T | 4 9 . 8 

k s i 

8 .857 
- 5 . 0 9 3 
- 8 . 8 5 7 

7.217 
- 2 . 1 2 4 

8 .857 
- 5 . 0 9 3 
- 5 . 0 9 3 
- 2 . 1 2 4 

8 .857 
5 .093 

- 1 0 . 1 8 6 
10 .186 

- 1 0 . 1 8 6 
- 8 . 8 5 7 

5 .093 
- 1 0 . 1 8 6 

10.186 
- 1 0 . 1 8 6 

5 .093 

7.217 
- 1 4 . 4 3 4 

12 .990 
- 1 2 . 9 9 0 

15.877 
- 1 5 . 8 7 7 

7.217 

I T o t a l 
I Time-
1 i n d e p e n d e n t 
1 S t r a i n , % 
1 
1 
I 0 .1219 
I 0 . 0422 
I - 0 . 0 4 2 4 
1 

I 0 . 1 6 2 8 
i - 0 . 0 1 2 7 
| 0 . 0202 

- 0 . 0 3 2 8 
- 0 . 0 8 5 3 
- 0 . 0 6 1 2 

1 
1 

0 .0731 
0 .0977 
0 . 0 5 2 2 
0 .0257 
0 .0151 

- 0 . 0 4 2 4 

0 .0913 
- 0 . 1 1 6 5 

0 .0912 
- 0 . 0 8 2 9 

0 .0316 

0 .1437 
- 0 . 2 3 0 4 

0 . 1 2 8 5 
- 0 . 1 3 1 8 

0 .3784 
- 0 . 1 8 3 0 

0 .0452 

Aging 
Time 

t s , h 

188 
269 

* 

20 

* 188 

* 269 
356 

20 
68 

115 
163 
213 

* 

68 
115 
163 
213 

* 

20 
92 

164 
236 
307 
380 

* 

Aging 
F a c t o r 

S?<CS> 

0 . 7 7 1 
0 . 7 4 0 

* 

1.000 

* 0 . 7 7 1 

* 0 . 7 4 0 
0 ,717 

1.000 
0 . 8 6 8 
0 . 8 1 6 
0 .784 
0 .760 

* 
0 . 8 6 8 
0 .816 
0 .784 
0 . 7 6 0 

* 
1.000 
0 . 8 3 8 
0 .784 
0 .751 
0 .729 
0 . 7 1 1 

* 

1 

D a t a , X 

0 .0807 
0 .0422 

* 

0 . 1 1 8 0 

* 0 .0202 

* - 0 . 0 5 3 7 
- 0 . 0 4 8 0 

0 .0319 
0 .0977 
0 . 0 5 2 2 
0 .0257 
0 . 0 1 5 1 

* 

0 .0597 
- 0 . 0 5 3 3 

0 .0280 
- 0 . 0 1 9 7 

* 

0 .0989 
- 0 . 1 4 0 8 

0 .0479 
- 0 . 0 5 1 2 

0 .2799 
- 0 . 0 8 4 5 

* 

strain 

P l a s t i c S t r a i n 
1 P r e d i c t i o n 
1 Wi thout 
1 Aging , X 
1 
1 
1 0 .1390 
1 0 . 1 3 9 0 
1 * 
1 
1 
1 0 . 1 4 8 0 
1 * 
1 0 . 0 3 4 3 

1 * 
1 - 0 . 1 2 0 7 
1 - 0 . 0 2 7 3 

1 
1 
I 0 .0212 
1 0 . 1 1 7 8 
1 0 . 1 3 9 0 
1 0 .1390 
1 0 .1390 
1 
1 
1 
I 0 .1207 
1 - 0 . 1 2 0 7 
1 0 .1207 
1 - 0 . 1 2 0 7 
1 * 
1 
1 
I 0 .1480 
1 - 0 . 1 4 8 0 
1 0 .0427 
1 - 0 . 1 4 8 0 
1 0 .3614 
1 - 0 . 1 4 8 0 

* 

P r e d i c t i o n 
With 
Aging , X 

0 .1072 
0 .1029 

* 

0 ,1480 

* 0 .0264 

* - 0 . 0 8 9 3 
- 0 . 0 1 9 6 

0 .0212 
0 .1023 
0 . 1 1 3 5 
0 .1090 
0 .1057 

* 

0 .1047 
- 0 . 0 9 8 5 

0 .0946 
- 0 . 0 9 1 7 

* 

0 . 1 4 8 0 
- 0 . 1 2 4 0 

0 .0335 
- 0 . 1 1 1 2 

0 .2634 
- 0 . 1 0 5 3 

* 
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proximated by the predictions with no effect of prior yielding, 
only aging, (b) Stress reversal to a smaller magnitude of stress 
than the previous stress (periods 2 — 3 in Fig. 3) did not 
completely erase the prior yielding in the opposite direction 
(the yielding by period 2). Then the plastic strain on the 
subsequent stress reversal period 4 was affected by prior 
yielding (the yielding by period 2 remained). 

Stress Reversal of Torsion With Constant Tension. The 
data of plastic strain for complete stress reversals 
simultaneously with a constant tension as in periods 3-5 of 
Fig. 2 showed a gradual decrease of plastic strain at every 
stress reversal for both ef, and «f2- These results suggest that 
if the stress reversals were continued in the same pattern of 
stress state changes, there finally would be no more plastic 
strain. That is, the changing yield surface would converge to a 
fixed yield surface. 

Nonproportional Loading. Consider a change of stress 
state from pure torsion to combined tension and torsion on 
the same Mises' effective stress level c=86.2 MPa (12.5 ksi) 
as in periods 1-3 of Fig. 1 (see Table 1). Period 2 may be 
neglected because it caused no plastic strain. If isotropic 
hardening of a Mises' type occurred, period 3 would yield no 
plastic strain, because period 3 lies on the isotropic sub
sequent yield surface caused by period 1. But the data of 
plastic strain for both ef, and ef2 on period 3 showed new 
additional plastic strain, where Aefi was four times larger 
than Aef2. This result suggests that loading in period 1 in
creased the yield surface mainly in the direction of pure 
torsion. 

The first loading of torsion in the presence of constant 
tension as in periods 1 — 2 of Fig. 2 may have the opposite 
effect to the foregoing, because the initial tension loading in 
period 1 may change the yield surface mainly in the direction 
of pure tension. But the data of eft in period 2 was rather 
close to the prediction with aging as shown in Table 1. 

Some of the features of plastic (time-independent 
nonrecoverable) strain were similar to those for viscous creep 
(time-dependent nonrecoverable) strain. Considering that 
interaction is possible between plastic strain and viscous creep 
strain, a more precise interpretation of experimental data 
might be possible with information from creep experiments 
with more exact control of loading conditions. 

Conclusions 

Analysis of creep data of 304 stainless steel at 593 °C 
(1100°F) under combined tension and torsion for varying 
stress history including stress reversals in torsion with or 
without constant tension showed that a viscous-viscoelastic 
model with certain modifications and aging effects predicted 
most of the features of the observed creep behavior 
reasonably well. 

Both time-dependent nonrecoverable (viscous) strain and 
time-independent nonrecoverable (plastic) strain are con
siderably affected by prior strain hardening at the same or 

different stress states, and also are similar in some of the 
features under stress reversals, where the same or larger 
magnitude of reversed stress erased the effect of prior strain 
hardening on creep or plastic strain in the opposite sense 
(partial reversal did not). Separate treatment of pure and 
mixed stress terms was required to describe nonrecoverable 
creep under stress reversal of torsion with constant tension. 
Further improvement of theory may be possible by including 
other metallurgical concepts, such as hardening and 
softening. Further experiments under multiaxial stresses are 
needed to study the effects of prior yielding and interactions 
among the strain components. 
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Ductile Fracture of Rapidly 
Expanding Rings 
Heterogeneous plastic deformation (necking) of thin ductile rings given an initial 
outward impulse is described in terms of the ordinary differential equations of 
thermoplasticity and the partial differential equations of mass and momentum 
conservation in one spatial dimension (circumference) and time. Flaws in cross-
sectional area and porosity are introduced and the resulting plastic deformation is 
calculated numerically for a prescribed initial radial velocity. Plastic deformation is 
initially homogeneous but soon concentrates in the weakest region, which then thins 
rapidly and fractures. Effects of flaw wavelength, work-hardening rate, thermal 
softening, and rate-dependent plastic flow on the flaw growth rate are studied. 

Introduction 

When an initially uniform ring of ductile material is given 
an outward radial velocity sufficient to cause large-scale 
plastic flow leading to tensile fracture, simple analysis based 
on cylindrical symmetry would predict fracture taking place 
everywhere simultaneously. However, practical experience 
and experimental measurement show that expanding rings fail 
by the process of inhomogeneous plastic flow and localized 
necking. The specific points at which necking begins depend 
on the imperfections that destroy the ideal circumferential 
uniformity which exists only in concept. 

The ideas of inhomogeneous plastic flow are well known 
and have been considered in the stability analysis of the quasi-
static tensile test beginning with Considere [1], and more 
recently Swift [2], Hill [3], and others [4-10]. When specific 
flaws were considered, they were generally due to cross-
sectional area variation, although Needleman and Trian-
tafyllidis [11] have considered the role of voids as the im
perfection leading to necking, plastic instability, and fracture. 
One-dimensional models of dynamic fracture and 
fragmentation of expanding cylinders were considered by 
Mott [12], Wesenberg and Sagartz [13], and Grady [14]. 

The relationship between ductile fracture of expanding 
rings and spallation was studied by Johnson [15] with the 
conclusion that, although both are controlled by the 
nucleation, growth, and coalescence of voids, the tensile stress 
states were of a sufficiently different nature to preclude any 
simple relationship between the two phenomena. 

Work by Fyfe and Rajendran [16] and Rajendran and Fyfe 
[17] on expanding rings and cylinders considers the dynamic 
effects of inertia on deformational stability and localized 
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necking. The effects of metallurgical imperfections (porosity) 
are also considered. 

In the aforementioned work, excluding fragmentation, 
much of the detail of the necking process is not considered; 
the emphasis is on conditions leading to the onset of in
stability. The advantage of leaving out some of these details 
(such as the temporal evolution of a particular flaw into a 
region of unstable plastic flow) is that analytical expressions 
can be obtained that provide insight to the general physical 
processes involved. 

Taylor, Harlow, and Amsden [18] treated the problem of 
necking in stretching plates and shells as a one-dimensional 
hydrodynamic problem in which the shell thickness is one of 
the dependent variables and each material point is given an 
initial velocity u proportional to its distance from some ar
bitrary origin: u = ex, where e is a constant strain rate. This 
simulates the behavior of an expanding cylinder (radius r) in 
which an outward radial velocity v produces a strain rate e = 
v/r. Their analysis results in a set of coupled partial dif
ferential equations which can be solved numerically by finite-
difference methods. By these means the growth or decay of 
various large-scale thickness variations were studied with the 
inclusion of mechanical effects such as work-hardening and 
rate-dependent plastic flow. In the work of Taylor et al., 
effects of porosity as a property influencing necking and 
fracture was not included. 

The present work is closely related to that of Taylor et al., 
with the following additions to the theoretical analysis: (1) the 
full equations of ring geometry are used, with the radial and 
circumferential velocity as separate dependent variables; (2) 
effects of material porosity are included in addition to cross-
sectional area variations; (3) a more general thermoplastic 
constitutive description is used, and temperature is calculated; 
and (4) the effects of work-hardening, thermal softening, and 
rate-dependent plastic flow on imperfection growth are 
considered. 

The state of stress in the necked region is assumed to be 
uniform. This approximation is reasonable only as long as the 
radius of curvature of the neck is large compared to the 
minimum thickness. When this condition is not satisfied, a 
multiaxial stress state exists which raises the stress necessary 
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Fig. 1 Geometry of the expanding ring. The height of the cylinder is h 
and the cross-sectional area is A = nh. 

to cause plastic flow [19]. Consideration of the effects of a 
multiaxial stress state on void growth in the necked region is 
avoided in the present work by using a purely empirical 
relationship between void volume and axial plastic strain. 
Fracture occurs when the void volume reaches a maximum 
allowable value (a few percent of the initial solid volume) 
determined by experimental measurement. 

Instabilities related to heterogeneous plastic flow 
phenomena such as shear banding are not considered. 

Differential Equations of Motion 

We consider a thin ring of average initial radius r0, as 
shown in Fig. 1. Eulerian (spatial) coordinates describing the 
motion are r and 6, with 6 being included to allow for cir
cumferential variation in initial density, wall thickness, etc. A 
Lagrangian (material) circumferential distance coordinate a is 
defined according to 

a = r08. (1) 

and t is time. The radius of the midplane of the ring is 
assumed to be independent of «, and the outward radial 
velocity is v = dr/dt. Other quantities defining the ring (all 
functions of a and t) are as follows: u, circumferential 
velocity; w, wall thickness; h, height of cylinder (not shown); 
A = wh, cross-sectional area; p, density; m = pA, mass per 
unit circumferential length; a, circumferential stress (positive 
in compression); F = aA, circumferential force; and s = alp. 

Mass Conservation. Consider the mass element (shaded 
region) shown in Fig. 1. At time t it is located at radius r 
between 6 and 6 + 86. At time t + 5? it is displayed radially 
and circumferentially: the latter displacement is due to cir
cumferential imperfections. The change in mass 8M between 
fixed 6 and 6 + 86 over the time increment 8t is 

5M=(pA)l+sl(r + 5r)5d~(pA),rde, (2) 

which must equal the difference between mass flow in (at 6) 
and mass flow out (at 6 + 86): 

&M=(pAu),6t-{pAu)t+„6t. (3) 

From equations (2) and (3), we then have, in the limit as 8t, 8r, 
and 86 go to zero, with v = lim (Sr/St), 

\d(PA)l PAv ( 1 \rd(PAu)l 

Mass conservation also requires that at any particular time 

pArd6 = p0A0da (5) 

in the definition of the Lagrangian coordinate a. Thus, 

VTAaeA ~\p~^A~0) Va^A ~~^~0\Ya)i'
 ( ) 

where m = pA is the mass per unit circumferential length. 
Equation (4) then becomes, with the identification (d/dt)a = 
{dldt)e + (ulr) (dldd),: 

(-£).•?•(-£)(£),-• <" 
Momentum Conservation. The vector position of the 

mass element (shaded) in Fig. 1 is given by 

x = r(cos 6, sin 6), (8) 

from which we find the acceleration to be 

x = (r-rd2)(cos 6,sm 6) + (2r6 + rd)(-sm 0,cos 6). (9) 

A dot above a variable indicates time differentiation at fixed 
material element. The force transmitted circumferentially 
across a Lagrangian material boundary is F = aA and the net 
force acting on the material element between 6 and 6 + 86 is 

/ dF dF \ 
* = (F cos 6+ s i n e — - , F sin 6 - cos 6 —- ) 86. (10) 

\ du do / 

Direct application of Newton's second law then gives 

mr86x = $. (11) 

In terms of the radial and circumferential velocity com
ponents, v and u, 

u = r&, (12) 

v = r, (13) 

equation (11) becomes, in Lagrangian coordinates, 

«[($). +T]--[™1 <"> 
where 5 = alp. 

In equation (14) the radial acceleration depends on the local 
stress and circumferential particle velocity, which are func
tions of a and t. But we have already assumed that the 
midplane of the ring maintains cylindrical symmetry. 
Equation (14) is therefore replaced by 

where < > defines a spatial average around the cir
cumference. 

Material Constitutive Description 

Following Wallace [20], we write the equations of ther
moplastic flow in the absence of rotation as follows: 

t=JTel + aiJ ^ , (18) 
(PoO 

where ay is the stress tensor, T is the temperature, Cyk/ is the 
fourth-order adiabatic elastic moduli tensor, ekl and ykl are 
the elastic and plastic strain-rate tensors, V is the Gruneisen 
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coefficient, and ce is the specific heat at constant strain 
configuration. The total strain rate is the sum of the elastic 
and plastic contributions: 

• *«, = $ + $•• 09) 
The total volumetric strain rate e„ is given by ikk. 

Total Strain Rate. For a thin ring, the total cir
cumferential strain rate, denoted <=, is due to two effects: (1) 
outward radial motion, and (2) variation in u around the 
circumference. Consider a material element whose initial 
length is rbd at time t. At time t + bt, its new length is 

(r + vbt)bB+ \u + 5a— )5t-u&t, 

and therefore the circumferential strain rate (positive in 
compression) is given by 

1 d" dU (20) v 

V 7 ~d0~ ~da 
which becomes, with the aid of equation (5), 

v m du 

r m0 da 
(21) 

Plastic Strain Rate. The plastic strain-rate tensor in the 6, 
r, z coordinate system (where the r and z directions are 
equivalent, because both are stress relieved if w and h are 
small) is written as 

0 

i/ o 
l 
2 (H) 

o 0 
( * - - : ) 

(22) 

where \f> is the circumferential plastic strain and a is the 
distention (the ratio of the specific volume to the crystalline 
voidless volume). The plastic volumetric strain rate due to 
void growth is given by 

Tr[iP] = - (23) 

The plastic strain-rate components \j/ and a are positive for 
extension and not independent: for A533B stainless steel, 
Shockey et al. [21] find that 

In Oo-inaf(j-y=° ^t' 
(24) 

where In af = 0.03, \j/f = 1.0 (plastic strain at fracture), and 
n = 1.74. In general, we write the relationship between a and 
\j/ in differential form as 

The porosity </> is related to a according to 

a - 1 

(25) 

(26) 

Yield Condition. For rate-independent plastic flow due to 
application of uniaxial stress a, we write the yield condition in 
differential form 

faa+faa+f+t+fTt=0. (27) 
It is realized that a and \p a r e not independent, but it is 
convenient to include both explicitly in the yield condition. 
For example, in the absence of work hardening and thermal 
softening, the function/in equation (27) might take the form 

/=|ff|__° =0> 
(28) 

for elastic-perfectly-plastic flow of solid material surrounding 
the voids (if present). The solid yield strength is Y0. For 
materials that exhibit work hardening and thermal softening, 
equation (28) might be modified as follows: 

'-'•'-(i) Y0 + Ywi,-YT(T-T{ ,,], (29) 

where Yw and YT are positive constants. Equation (29) applies 
only in the specific case that \j/ is nondecreasing (i.e., plastic 
flow is not reversed). 

For rate-dependent plastic flow, plastic strain rate is 
specified as a function of the other variables: 

t=e(o,u,\l,,T). (30) 

The particular form of the function e used here is 

S_ 
•o 

where / > 0 is the function given by equation (28) and t] is a 
constant with units of viscosity. 

e(a,a,\j/,T) • (31) 

One-Dimensional Ring Geometry. With the foregoing 
definitions, the general equations of thermoplastic flow 
reduce to 

t=E(e+^)-(l-2u)Tai, 

ax// 

PoCt 

(32) 

(33) t=rr(ev+i)-

e „ + ^ = ( l - 2 * o [ e + ( l + ^ ) ^ ] , (34) 

where E and G are the isotropic adiabatic Young's and shear 
moduli, respectively, and vis Poisson's ratio: 

E - 2 G 

' — 2 0 - ( 3 5 ) 

The moduli E and G are functions of the porosity as deter
mined by Mackenzie [22] with modifications suggested by 
Johnson [15]. 

For simplicity, it is further assumed that density changes 
are due only to changes in porosity: 

P = 
Ps (36) 

where ps is the constant crystalline density. For the magnitude 
of the tensile stresses considered in the remainder of this 
work, this is a very reasonable approximation. 

Thermal conduction has been neglected in the preceding 
theoretical development. This is acceptable as long as the 
characteristic time for significant heat conduction remains 
large compared to the times of localized plastic flow and 
necking. An initial sinusoidal variation in temperature of 
wavelength X will tend to smooth out in times on the order of 

- ( ^ ) 2 ^ , 07) 
\2ir/ K 

where K is the thermal conductivity. If Nx is the integral 
number of wavelengths in the circumference 2irr, equation 
(37) becomes 

PoCe (38) 

Thus, for K = 0.2 cal c m - ' r ' K " 1 , r = 2.5 cm, 7YX = 32, 
and other material constants listed in Table 1, for A533B 
steel, T = 2500 ^s. The time is long for all calculations 
presented here and we are, therefore, justified in omitting 
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sUp (see reference 

Table 1 Material properties: A533B pressure vessel steel. c0 

and 5 are constants in straight-line fit of shock velocity Us as a 
function of particle velocity Up: Us = c0 + 
[15]). 

Initial density 
Bulk sound velocity 
Bulk modulus 
Us,Up slope 
Griineisen constant 
Specific heat 
Shear modulus 
Poisson ratio 
Young's modulus 
Bar velocity 
Yield strength 

Table 2 Summary of equations 

Po 
C° 2 
K=Poc0 
s 

r 
ce G 
QK-2G)/2(3K+G) 
E = 2G(l + y) 
c 6 = VE/p0 

^ 0 

7.89 g/cm3 

0.458 cm/fis 
1.655 Mbar 
1.5 
2.0 
O.lcal/g-K 
0.790 Mbar 
0.294 
2.045 Mbar 
0.509 cm/Ms 
0.0055 Mbar 

Equation number Function Variables 
(7) 

(15) 

(16) 

(21) 
(25) 

27 (or(30)) 
(31) 
(32) 
(33) 

Mass conservation 
Momentum conservation 

(circumferential) 
Momentum conservation 

(radial) 
Strain rate definition 
Plastic strain disten

tion relationship 
Yield condition 
Strain rate 
Temperature rate 
Volume strain rate 

m,u,v 
m,u,v,s 

u,v,s 

m,u,u,e 
a,\j/ 

(J, a, 4", T 
C7,E,l/< 

a,ev,ct,\l/,T 
a,ev,a,\l/,f. 

thermal conduction. It is implicitly assumed that ductile flow 
and failure occurs homogeneously on a reasonably small 
scale. We do not consider instabilities related to effects such 
as adiabatic shear banding, for example. 

Numerical Calculation 

The foregoing theoretical analysis provides nine in
dependent equations in nine unknowns whose solution 
describes the response of a nonuniform ring to an outward 
impulse. The variable unknowns are m, u, v (or r), a (or s = 
aa/ps), e, i/s e„, a (or p = ps/oi), and T. The equations are 
summarized in Table 2. 

This collection of ordinary and partial differential 
equations (of one spatial dimension a) are of the form that 
can be solved by simple finite-difference methods. The first 
four (partial) differential equations are written in centered 
finite-difference form as described in the Appendix. The 
solution is started by specifying an initial outward radial 
velocity v = v0 and u(a, 0) = 0. The initial imperfection is 
specified in terms of m0(a) arising from variation in either 
cross-sectional area^4 or in porosity <t> = ( a - I)/a. 

In all calculations presented in this paper, we consider only 
one material and a single geometry. The material is A533B 
pressure vessel steel with material properties listed in Table 1. 
The initial radius is 2.5 cm and the average cross-sectional 
area normal to the ring circumference is 0.1 cm2. 

Cross-Sectional Area Imperfection. Calculations are 
performed for 0.5 percent cosine variation in initial cross-
sectional area with Nx = 8, 16, and 32. The initial outward 
velocity is v0 = 0.020 cm//is. The ideally plastic yield con
dition is given by equation (29) with Yw = 0 and YT = 0. 
Figure 2 shows the nondimensional radial velocity v/v0 is a 
function of time for the three cases. The horizontal lines for 
Nx = 16 and 32 indicate that fracture has occurred. 

The necking process leading to fracture for Nx = 16 is 
shown in Fig. 3. The nondimensional dependent variables are 
m/m0 (where mQ is the average initial mass/length), 771000 
K (with T0 = 300 K), - <t>/<t>f (where 4>f is the porosity at 
fracture, {af~\)/af = 0.02996), and aa/Y0. These quantities 
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Fig. 2 Radial velocity of expanding ring with 0.5 percent initial cross-
sectional area (cosine) variation 

are denoted by M, T, </>, and CT, respectively, in Fig. 3 and 
similar figures that follow. In every case, porosity is a few 
percent or less and, therefore, variation in M is due 
predominantly to variation in cross-sectional area. 

At t = 10 /is (Fig. 3) the variables m, T, <f>, and a are 
relatively uniform—the departure from the initial 0.5 percent 
cross-sectional area variation is not great. Plastic flow is 
taking place uniformly, with aa/Y0 = - 1 everywhere. At t 
= 30 jus the imperfection has grown substantially, and plastic 
flow has become localized between 0.25 S (a/X0) S 0.75. 
Outside this region the stress state has moved back within the 
failure surface; i.e., (ao/Y0) > - 1 . As time proceeds, the 
plastic flow region becomes more and more localized, the 
temperature goes up, m decreases dramatically at al\ = 0.5, 
and fracture occurs at t = 66 /xs (not shown) when the plastic 
strain ^ reaches i/y = 1.0. 

The time to fracture is a monotonically decreasing function 
of 7VX for constant imperfection amplitude. This does not 
mean that in practice ring fracture is controlled by flaws of 
infinitesimal size (i.e., 7V\~oo). Fracture is controlled by the 
average imperfection amplitude for a given value of Nx, and 
statistical calculation of fracture requires this type of in
formation. 

Initial Porosity Imperfection. Similar calculations are 
performed with uniform area cross section, but with 0.5 
percent cosine variation in initial porosity. Figure 4 shows the 
nondimensional radial velocity v/v0 as a function of time for 
the three cases; N x = 8, 16, and 32. They are similar to those 
shown in Fig. 2, but not identical. Figure 5 shows the 
evolution of the necking region for Nx = 16. This too is very 
similar to the result for cross-sectional area variation (Fig. 3), 
with the exception of the porosity. At j = 10 /xs the initial 
porosity imperfection is apparent in Fig. 5. At t = 30 its 
plastic flow becomes localized, and at t = 55 /xs the necked 
region is fully developed. Fracture occurs at r = 62 jts (not 
shown). 

As in the case of cross-sectional-area imperfections, the 
time to fracture is a monotonically decreasing function of N^ 
for constant imperfection amplitude. Again, additional in
formation is required on the relationship between average 
imperfection amplitude and Nx to perform fracture 
calculations for a specific experimental situation. 

Stabilizing Influences. For rate-independent elastic-
perfectly-plastic flow, in the absence of work hardening, 
small initial imperfections in porosity and cross-sectional area 
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Fig. 4 Radial velocity of expanding ring with 0.5 percent initial 
porosity (cosine) variation 

grow unstably. Calculations were also performed for the case 
of work-hardening material with Yw = 0.002, 0.004, 0.005, 
and 0.01 Mbar in equation (29) and the results are shown in 
Fig. 6. The ring geometry (r0 = 2.5 cm), initial outward 
velocity (y0 = 0.020 cm/jts), and porosity imperfection (0.5 
percent with Nx = 16) are the same as for calculations shown 
in Fig. 5. A value of Yw on the order of 0.01 Mbar provides 
sufficient work hardening to maintain homogeneous plastic 
deformation. 

The effect of thermal softening counteracts work hard
ening. This can be seen quantitatively from combination of 
equations (25), (27), and (32)-(34): 

r 7 T ( 1 - 2 K ) - | . 

î  = 0 (39) 

U u ' J 1 p 

1 f JaS<p 

for tensile flow. 

-fro] 
tpcc 

37T2(l-2i>)y 
E iJ 

I f / and g are given by equations (24) and (29), equation (39) 
becomes, in the limit as i/'—0, a— — Y0, T—T0, and a—1, 

Yw[l ~ I YTY0/(YwPcJ}{ 1 - 3 P c £ r 2 r 0 ( l -2v)/E]]t 

l-YTTQT(l-2v)/E 

(40) 

Nominal values for Y„ and YT are [23, 24] 

Yw ~ y 0 = 5.5 x l O - 3 Mbar, 

K r ~ 1 0 - 3 y 0 = 5 .5x lO- 6 Mbar~ 1 . 

Thus, the magnitudes of the various nondimensional terms in 
equation (40) are 

r T r 0 r ( i - 2 i ' ) 
= 0.007 

3PceT
2T0(l-2p) 

=0.024 

Ywpce 
= 0.167 

showing that work-hardening considerations dominate the 
flow, but not sufficiently to be able to completely ignore the 
compensating effect of thermal softening. A useful ap
proximation to equation (40) is 

& £ - y w ( i -
Ylvpcc 

> (41) 

and one must check in each specific case whether or not the 
second term in the brackets is negligible. Thermal softening 
becomes important when YT ~ Ywpce/Y0. 

Rate-dependent plastic flow also tends to slow the growth 
of imperfections as shown in Fig. 7 for the plastic strain rate 
given by equation (31) with 17 = 10 kp and 100 kp. The 
geometry and imperfections are the same as for calculations 
shown in Figs. 5 and 6. For r) = 10 kp the response is very 
nearly the same as for the rate-independent behavior—Fig. 5 
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Fig. 5 Spatial dependence of flow variables for one wavelength of 0.5 
percent initial porosity (cosine) variation (NA = 16) 

(t = 55 jus). The stabilizing effect becomes evident for r\ = 
100 kp. 

Summary 

The ordinary and partial differential equations governing 
inhomogeneous plastic flow and dynamic ductile fracture of 
expanding rings are presented. The flaws that are investigated 
here are variations in cross-sectional area and initial porosity. 
The system of equations is solved numerically for a single 
material (A533B steel), a single geometry (ra = 2.5 cm andA0 
= 0.10 cm2) and initial impulse (with v0 = 0.020 cm//^s), and 
a single imperfection amplitude (0,5 percent in cross-sectional 
area and initial porosity). Whether the flaw is in the cross-
sectional area A or in the porosity <t> makes only a small 
difference in the time at which fracture occurs, although A 
and 4> enter into the theory in quite different ways. Additional 
calculations were made with the same initial porosity 
distribution, but with several different values of the work-
hardening coefficient Yw and the rate-dependent plastic flow 
parameter ?j. These calculations show the time evolution of 
the flawed region up to the point of complete separation, 
which occurs at the empirically determined void fraction of 
0.03 percent and axial plastic strain of 1.0 [21]. 

As expected, flaw growth is inhibited by work hardening 
and rate-dependent effects. For the case of A533B steel, 
effects of thermal softening are overcome by work hardening, 
but not by such a magnitude as to suggest that local heating 
can always be ignored. The calculated temperature increase at 
fracture was typically 140 K. There may be other materials for 
which the localized temperature increase substantially speeds 
the necking process. This effect is generally ignored in 
stability analyses of the necking and fracture. 

Measurement of radial velocity as a function of time has 
already been used in determining material constitutive 
behavior at intermediate strain rates [25, 26]. Similar ex
periments on expanding rings with premachined flaws may be 
useful in the determination of tensile fracture properties, 
when performed in conjunction with the analysis presented 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 
a/X0 

Fig. 6 Spatial dependence of flow variables for one wavelength of 0.5 
percent initial porosity (cosine) variation (Nx = 16) at t = 55 ps for 
various values of the hardening coefficient Yw: (A) 0.002, (8) 0.004, (C) 
0.005, and (D) 0.01 Mbar 

here. This removes the dependence on statistical variability 
for starting the necking process. Recovery and microscopic 
examination of samples taken up to and through complete 
fracture provide necessary information on the relationship 
between porosity and plastic strain. 

There are a number of advantages in using the expanding 
ring to study fracture. The tensile stress state is highly 
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Fig. 7 Spatial dependence of flow variables for one wavelength of 0.5 
percent initial porosity (cosine) variations (Nx = 16)atf = 55^sfortwo 
values of rate-dependent plasticity coefficient ij: (left) 10 kp and (right) 
100 kp 

nonisotropic in contrast to spallation experiments [15] and 
fracture takes place following considerable plastic straining. 
Rates of loading are controllable and measurable [25, 26]. 
Constitutive properties can be obtained simultaneously. 
Because of the ease of recovery and the possibility of 
prescribing the initial flaw magnitude and location by 
premachining, experiments with expanding rings can provide 
a new means of studying dynamic fracture. 
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A P P E N D I X 

Numerical Solution Scheme 
The centered finite-difference scheme can be described by 

reference to Fig. A-\. The a, t plane is divided into a series of 
rectangular grids of uniform spacing Aa/2 in the spatial 
direction and At/2 in the time direction. Because v (and r) are 
independent of a, their values depend only on t: v is calculated 
along integer multiples of A? and r is calculated along half-
integer multiples of At. Circumferential velocities u are 
calculated at positions marked by x; strain rates e are 
calculated at positions marked by the squares; £ (or cr), m, and 
all other material variables are calculated at nodal points 
marked by the circles. It is assumed that the variables are 
known at times t and t + At/2, and we are interested in 
finding new quantities at times t + At and t + 3At/2. 

Equation (16) gives the velocity v at time t + At: 
<s+u2>At ,A s 
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where 

<s + u2> = — £ [s„(r + y ) + « 5 + v4 (0 04-2) 

and TV is the number of computational cells in the ring cir
cumference or other repetitive unit (such as a single 
wavelength for sinusoidal variation in cross-sectional area). 
The u2 term in equation 04-2) is not centered; that is, we are 
using a value one-half a time step behind. To properly center 
this term requires a simultaneous difference solution of 
equations (15) and (16). In view of the very small contribution 
of the u2 term in comparison to 5 in determining the radial 
acceleration, we chose the simpler, noncentered form of the 
equation. The remainder of the difference equations are 
properly centered. The radial position at t + 3 At/2 is given by 

/ 3A/\ / At\ 
r \ t + ~ r ) = r \ t + i : )+»(( + &)•&. (A-3) 

Integration of equation (15) begins by writing it as 

{ — )a+iu = K (4-4) 

where the centered quantities, 

v(t)+v(t + At) 
* = • 

2r(t + At/2) 
04-5) 

X = 
mn + l (t + At/2)s„ + i (t + At/2)-m„ (t + At/2)s„ (t + At/2) 

Aa(w0i„+w0i„+1)/2 

04-6) 

are treated as constants over the interval from / to t + At. 
Thus 

un+Vl(t + At)-un + Vl(t) 

At 

^,u„+Y2(t + At)+un + Yl(t) . 
+ ? r = A. (4-7) 

i(/ + A/) = 
u„+Vl(t)(l-^At/2) + \At 

(AS) 
1 + £At/2 

The mass conservation relationship, equation (7), is written 
r(t + 3At /2 ) a s 

/ dm \ 

where the centered quantities, 

2r(t + At/2) 

v(t)+v(t + At) 

_V2(t + At)-un„.V2(t + At) 

04-10) 

04-11) 
Aa m0t„ 

are treated as constants over the interval from / + At/2 to t + 
3 At/2. Thus, equation 04-9) can be integrated to give 

3At\_ 7 
h,(t + 

2 / r - / 

where 

f= 
y + Pm„ (t + At/2) 

exp(-yAt). 

(A-12) 

(A-13) 
m„ (t + At/2) 

The total strain rate is given by equation (21), which is 
written in finite-difference form as 

-2v(t+At) 
e„(t + At) = 

r(t + At/2) + r(t + 3At/2) 

mn(t + At/2) + mn(t + 3 At/2) 

2mn 

un+Vl(t + At)-un„Vl(t + At) 

Aa 
04-14) 

or 

Once the average total strain rate over the interval from t + 
At/2 to / + 3A//2 is known, the last five coupled ordinary 
differential equations in Table 1 can be integrated numerically 
by standard methods-to give a, e„, a, 4>, and Tfrom t + At/2 
to t + 3At/2 at constant a. For all calculations in this work a 
one-step Runge-Kutta method is used [27]. 

To limit the formation of compressive shock waves and 
numerical instabilities, an artificial viscous stress qn is added 
to s„ in equations (A -2) and 04-6): 

^ = - [ ( L ' A a ) 2 | (^)J + ( ^ A ^](^)„ ' (^15) 

where Lx and L2 are nondimensional constants, cb is the 
elastic bar velocity, and 

/_a«_\ = u„+</1(t)~un+yi(t) 

V da / n Aa 

The constants Lx and L2 are small enough to have negligible 
effect on the physical processes involved: typically, Lx~2 and 
L2~0A. 

Cyclic boundary conditions are imposed. For example, if 
the repetitive unit contains M spatial cells: 

with similar restrictions on m and n. The repetitive unit is 
obtained by dividing the circumference by an integer Nx. This 
integer is the number of wavelengths of the initial im
perfection that can be fit exactly into the initial cir
cumference. 

04-16) 
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Statistical Theory of the Strength 
of Fiber Bundles 
Following a review of statistical models of the failure of single fibers and bundles of 
these fibers, algebraic recurrence formulas are derived that generate expressions for 
the failure probabilities of bundles of classical fibers. One of these recurrence 
relations is suitable for the accurate numerical calculation of failure probabilities of 
bundles consisting of up to 500 single fibers. It is shown how account can be taken 
of the effect of defect-free fibers having finite strength. Numerical results are 
compared to three asymptotic analytic approximations, two of which have been 
proposed in the statistical literature and are now applied to fiber problems for the 
first time. 

1 Introduction 

This paper is concerned with the statistical distributions of 
the strength of single fibers and the strength of bundles of 
fibers. The principal objective of the paper is to summarize 
and review some recent developments of the classical model of 
Daniels [1], 

The fibers are assumed to be made of an elastic material 
such that the defects they contain do not grow in size during 
loading. The uniaxial stress in a fiber thus .depends only on the 
extension when inertia effects are negligible and is in
dependent of the rate of loading. When considering bundles 
of such fibers, the loading mechanism is assumed to share the 
applied load equally among the surviving fibers of the bundle. 
Interactions between the fibers, which arise when the fibers 
are twisted to form a rope or embedded in a matrix to form a 
composite, are neglected. 

The main features of Daniels' model are presented in the 
next section. The remainder of the paper is concerned with the 
accurate numerical determination of the probability of failure 
of a large bundle of fibers. An improved recursive formula 
for the exact calculation of this probability is given, and 
numerical results are compared with three asymptotic ap
proximations which have been proposed in the literature. 

2 Review of Statistical Models for Fibers and Bundles 
of Fibers 

The principal idea underlying statistical models for in
dividual fibers is the "weakest-link" concept. This was ap
parently introduced by Chaplin [2, 3] (see review in Harter 
[4]) and further developed by Peirce [5] and Weibull [6]. The 
connection with the statistical theory of extreme values was 
exploited by Epstein [7, 8], Gumbel [9], and Coleman [10]. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, November, 1981; final revision, 
December, 1982. 

Different aspects of the theory as applied to brittle materials 
have been investigated by McClintock and Argon [11], Argon 
[12], and Hunt and McCartney [13]. 

Suppose the fibers are of length a, and the probability of 
failure of a fiber of unit length under the stress increase from 
0 to a is F(a). The weakest-link failure hypothesis asserts that 
the probability of failure of a fiber of length a, under the 
stress increase from 0 to a, is given by the relation 

PF(o)=\-{\-F(a)]«. (1) 

This is equivalent on differentiation to equation (1) of Peirce 
[5]. Weibull [6, equation (4)] derived the same formula in the 
form 

PF(a) = 1 -exp( -a n(a)) 

where n(a) = - ln{ 1 -F(cr ) ) (2) 

and interpreted the function n(a) as "that number of weak 
places per unit volume which causes rupture at a stress equal 
to, or less than, the amount a.'' 

Weibull proposed the functional form 

K(<T) = (0-/0-0)'", (3) 

where a0 and m are positive constants, as a convenient form 
for mathematical analysis. This leads to the distribution 
function 

PF(o)= l-exp{ -a(a/a0)" (4) 

in which the length a appears explicitly as a parameter. 
More generally, if it is assumed that F{<j) obeys the 

asymptotic relation 

F(<J)~ (0-/0-0)'" as o-O (5) 

then the statistical theory of extreme values maybe used to 
show that (4) is again valid as an asymptotic relation for large 
a. This approach was taken by Coleman [10], for example. 
Thus it appears that equation (4), known as the Weibull 
distribution, is well suited to the statistical analysis of strength 
of fibers. The Weibull distribution is further supported by 
theoretical arguments based on extreme value theory [7-10]. 
In view of equation (1), as a—00 we would expect the 
distribution function PF, under suitable renormalization, to 
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be approximated by one of the three limiting distributions for 
the minimum of a random sample. Of these three 
distributions, the Weibull distribution is the only one con
centrated on the positive half-line and is therefore the most 
suitable for material strength. In practice the Weibull 
distribution is extensively applied with the scale parameter a0 

and the shape parameter m estimated from stress-rupture 
data. 

For the study of bundles of fibers it will be assumed that the 
function PF(o) is known for each a>0. It need not satisfy (4), 
although in view of the wide applicability of this distribution, 
equation (4) will be assumed in all numerical calculations. 

The first detailed treatment of the statistical distribution of 
the strength of a bundle of fibers was given by Daniels [1]. 
The main features of Daniels' model are that fiber failure is 
independent of the rate of loading, and hence is determined by 
the function PF(a), and that the load on the bundle, in a 
typical situation where some fibers have failed and the 
remainder are supporting the applied load, is distributed 
equally over the surviving elements. In recent years a number 
of extensions of this basic model have been analyzed. 
Coleman [14-16] introduced a class of models for fatigue 
failure which has been used by Phoenix [17-19]. Another 
direction of research has been the relaxation of the "equal 
load-sharing" assumption to allow for such features as 
random slack in the fibers (Phoenix and Taylor [20]) or in-
terfiber frictional forces (Smith and Phoenix [21]). In par
ticular, much attention has been given to the development of 
models for composite materials when the fibers are embedded 
in matrix, e.g., Harlow and Phoenix [22, 23], Smith [24]. The 
present paper, however, is concerned with the original model 
of Daniels [1], in which recent improvements to both the exact 
and asymptotic formulas given by Daniels' appear to be of 
considerable interest. 

The model under discussion comprises a bundle of elastic 
fibers arranged in parallel and subjected to some uniaxial 
stress applied along the direction in which the fibers are 
aligned. The probability of failure of a single fiber under 
stress increase from 0 to a is assumed known for each a>Q, 
and in all numerical calculations it is assumed to satisfy (4). 
The load on the fibers is shared equally over all surviving 
fibers. Thus, if there are N fibers in the bundle, the applied 
load on the bundle is L, and there are r failed fibers, then the 
stress in each of the surviving fibers of the bundle is given by 

r r M : r = 0,l, , N - 1 , (6) 
(N-r)A 

where A is the cross-sectional area of a fiber. 
For this model, extensive results for both exact and ap

proximate determinations of the probability of failure are 
known. The next two sections present results for the exact 
probability of failure. 

3 Probability of Failure of a Bundle of Classical 
Fibers 

A bundle of N fibers is formed by random sampling from 
the population of single fibers. The bundle is subjected to a 
load L and it is assumed that the surviving fibers share the 
load equally. The stress in each surviving fiber when r fibers 
have failed is given by (6). It is clear that 

otff><o\N>< <*W-2 « # > , . 

For a single fiber PF(a) is the probability that it fails during 
the stress increase 0 — a and Ps{a) = \ -PF(a) is the 
corresponding probability of survival. It follows that 

Ps(a^)>Ps(aP)> . . . . >Ps(o<ffll)-

The failure of a bundle of N fibers can occur only if the fiber 
strengthss l t s2 sN, arranged in ascending order, satisfy 
the inequalities 

O^Si^otfO, s^Si^ofQ, <sN<aN 
UN) 

(7) 

Following Daniels [1] the probability of this event is given by 

P™(L) = N\ PWiWi PF(.s2)ds2 . . . 
JO J S] 

1 "k-l 
sN-l 

PF(sN)dSt, 

By means of the substitution tr=PF(sr) for l<r<N, and 
using PF{a) = 1 - Ps(a), it follows that 

P<M{L) 

= N\\ dtA dt2 . . . dtN,N>\, 
JO J< ! J ' N - 1 

(8) 

where 

UN).. Ps(o™), r = 0,l . . .N-l. 

The expression (8) is not however convenient for the direct 
calculation of the bundle failure probability P(A°(L) using a 
computer. Two recurrence formulas will now be derived, the 

N o m e n c l a t u r e 

a 
a 

F{a) 

W°) 

<*o 

m 

N 

A 

= length of bundle 
= stress 
= cumulative failure 

probability for fiber 
of unit length 

= cumulative failure 
probability for fiber 
of length a 

= Weibull scale 
parameter 

= Weibull shape 
parameter 

= number of fibers in 
a bundle 

= cross-sectional area 
of one fiber 

/ > » 

o™ 

ac 

L 
G(L) 

M,S,L0,B,y,P 

X,0 

= survival probability 
(l-JV(cr)) 

= s tress in each 
surviving fiber 
when r out of N 
have failed 

= ultimate tensile 
strength 

= total applied load 
= probability that a 

single fiber fails 
under load L 

= constants derived 
from G 

= absolute constants 

TN = 

l=L/NA = 

l0=M/A = 

(0.996, - 0 . 3 1 7 , 
respectively) 
maximum load in a 
bundle of N fibers 
cumulative distri
bution function for 
standard normal 
deviates 
nominal stress (per 
fiber) applied to the 
bundle 
limiting failure 
stress (per fiber of 
the original bundle) 
as N~oo 
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second a generalization of the first, which facilitates this 
calculation. 

It may be seen that the expression for P(A°(L) depends only 
on TVand the survival probabilities x^.x^, . . . . .x^ , , a nd 
not otherwise on L or the function Ps. Accordingly, let us 
define, for any TV> 1 and any x0 >xt > . . . >xN_x >0, the 
function 

f <-*c 
<M*o.*i> • • • 'x»-i) = Nl\0 

dt2...\ 

dt, 

dts TV>1. (9) 

This is probability of failure of a bundle of TV fibers given that 
xr, for 0<r<TV- 1, is the probability that any specified fiber 
survives a stress increase from zero to the stress that would 
arise from the failure of exactly r fibers of the bundle. The 
probability of failure of the bundle may be expressed in terms 
of 4>N a s follows 

where 
p'«(L)=^(xf, ^r xf,) 

x^=Ps(o^), /• = 0,1, . . . ,N-\. 
(10) 

The next step is to obtain an expression for the probability 
of exactly r failures in a bundle of size TV when successive fiber 
failures are controlled by the parameters x0, x{ *N-\-
The probability that r specified fibers all fail and the rest 
survive is 

4>r(x0,Xi, . . .xr_[)xr
 r; 

the first factor being the probability that the r fibers fail and 
the second being the probability of survival of the remaining 
TV— r fibers under the influence of the increased stress. Now 
the number of ways in which a subset of r fibers can be chosen 
from a bundle of TV is 

/ T V \ _ TV! _ / T V \ 
\r / r\(N-r)\ ~\N-r)' 

Consequently the probability of exactly r failures in a bundle 
of sizeTVis 

m = l,2, . .TV-1 . (14) 

Furthermore the probability that just r fibers in the bundle 
fail when the load L is applied is given by 

(15) 

Although equations (13) and (14) could be used to calculate 
p(N) (£) for a n y jy a n c j ^ experience has shown that con
siderable numerical errors arise during the course of their 
application. A second recursive formula will now be derived 
which is much more satisfactory for numerical computations. 

It follows from (11) that 

r = 0 r 

and thus 

for all values of z. By making use of the identity 

crxD-cxr,)-
and interchanging the orders of the m and r summations, it 
can be shown that 

r = 0 

i.e., 
N 

= (l+z)N, 

E (N)<t>r(X0,Xl, . . . ^Cr.1XZ + Xr)
N-r = (l+Z)N, 

r = 0 

which leads to the recurrence relation 

$/v(*o>*i> • •XN~U 

( ^ ) * , ( W , . • • • • * , - . * ? - . - 0 , 1 N, = ( 1 + , ) " - £ ( " W ^ , . . .x^)iz+Xr)^ 

where 4>0 = 1. Now when a bundle is loaded it is certain that 
either no fibers fail, or just one fiber fails, or . . . . , or all TV 
fibers fail. Thus the functions 4>r, r = 0, 1 TV must 
satisfy the relation 

E (,. )<M*o>* i, . . . ,xr_^)xr ' — 1, (11) 

which can be recast in the form 

^ ( • ^ O i - ^ l i • • • > * N - l ) 

J V - 1 . . . . 

= 1" E ( r )*rUo^l, • )*/--! )x?~r. (12) 

The relation (12) is valid for all TV > 1 and it can thus be used 
to compute the functions 4>N, TV > 1, recursively. On setting 
xr = Ps(a

{
r
N)), r = 0, 1, . . TV-1, so that the equal load-

sharing rule applies, it follows that the failure probability 
PiN) (L) of a bundle of TV fibers subjected to a load L may be 
computed from the formula 

P<">(L) = 1 - E (jV)*,(A,,UM<r«"'))"-', (13) 

where the quantities ${
r
N), r = 0, 1 . . . TV- 1 are defined 

recursively by *^A,) = 1, 

TV>1, where tf>0 = l. (16) 
This is a generalization of the recurrence relation (12). The 
parameter z may be chosen for computational convenience, 
and moreover it may be different for each stage of the 
recursive procedure. It has been shown (McCartney, [25]) that 
the choice z = —xN_lt when <j>N is being calculated, reduces 
significantly the numerical error of computation when the 
number of fibers is large. On substituting xr = Ps (o[N)), r = 
0, 1, . .TV- 1 as before, it follows from (16) that the failure 
probability P(N) (L) of a bundle of N fibers subjected to a 
load L may also be calculated using the formula 
pW(L) = [l-Ps(otf}l)]N 

- E (N)VN){Ps(a{rN))-PS(a^i))N-r (17) 

where the quantities *r
(A,), r = 0, 1, . . . ,TV-1 are now 

defined by * r ' = 1, 
$<f° = ll-.Ps(<^'v- )i)r 

in ~ 1 , . 

- E ( m K ( N ) lPS(°{rN) ) -PS(^i))"-r 

w = 1,2, . . T V - 1 . (18) 
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The probability that just r fibers in the bundle fail when the 
load L is applied is again given by (15). The recurrence 
relation (18) has been used when calculating the numerical 
results presented in this paper. 

4 Accounting for the Effect of the Finite Strength of 
Defect-Free Fibers 

In the analysis presented so far, no explicit allowance has 
been made for the fact that there is an ultimate tensile strength 
that is never exceeded. This could be incorporated into the 
analysis by modifying equation (4) so that PF(a) = 1 
whenever a > ac, where ac is the ultimate tensile strength of 
the material. A method of allowing for the effect of this will 
now be presented, which has the advantage that the basic 
recursive equations remain unchanged and it is only at the 
final step that the allowance for ac is made. 

When considering the effect of the finite strength ac of 
defect-free fibers the following applied load ranges must be 
considered 

noc<L< ( n+ l ) a c , « = 1,2, . . . ,N-1, Nac<L. 

If the load L applied to a bundle of N fibers lies in the range 
nac < L < (« + \)ac then the bundle fails if r > N—n fibers 
break because of the presence of defects. The probability of 
this occurring is the failure probability of the bundle when a 
load L is applied and this is given by 

£ P(r
N)(L),noc<L<(n + \)oc, n = 0,l..N-l, 

1, Nac<L, 

(19) 

where PlN) (L) defined by (15) is the probability that just r 
fibers fail in a bundle of N fibers when the load is applied. 

The expression (19) has the advantage that the failure 
probabilities for the bundle can be computed for a variety of 
values of <rc without having to recalculate the value of 
P{

r
N) (L), r = 1. . .N. An alternative approach is simply to 

redefine the function Ps (o) as follows 

Ps(<r)-

and to proceed as before. 

( 1 - F ( a ) ) a , a<ac 

0, <7> Or 

5 Asymptotic Approximations to the Probability of 
Failure 

In Section 3 a recursive formula was given for the 
calculation of Pm (L), the probability that a bundle of N 
fibers fails under the application of a load L. This was ex
tended in Section 4 to allow for the case of finite ac, where ac 

is the largest stress that may be supported by a defect-free 
fiber. In this section three approximations to P ( N ) (L) will be 
described. The approximations are all based on the normal 
distribution, but differ in their means and variances. 

Let G(L) denote the probability that a single fiber fails 
under a load L. For a fiber of cross-sectional area A, the 
function G is related to the function PF of (1) by 

G(L)=PF(L/A). (20) 

The approximations depend on constants M, S, L0, and B, all 
of which are derived from the function G, and also on two 
universal constants X and <t>, whose numerical values are 
known. The constant L0 is defined as the value of L for which 
the function L{\ —G(L)) attains its maximum; it is assumed 

that L0 is thus uniquely defined. The maximum value is 
denoted M, i.e., 

M = L 0 ( 1 - G ( L 0 ) ) . (21) 

It is assumed that dG/dL and d2G/dL2 exist and are con
tinuous at L = L0 and that 

d 

dL 

d2 

ini-G(L))\ 

[L(1-G(L)) 

= 0, 

dL2 

Then S and B are defined by 

S2=L2
0G(L0)(\-G(L0)), 

dG 

<0. 

(22) 

(23) 

(24) 

dL V~U'J ~~"l IT dL "'"' " u dL2 V""'J" ( 2 5 ) 

Note that (23) guarantees that the denominator of (25) is 
nonzero. 

Let TN denote the maximum load that can be supported by 
a bundle of N fibers. It was shown by Peirce [5] that TN/N — 
M a s N - oo. The approximations described here are suc
cessive refinements of this crude approximation. The first 
approximation is due to Daniels [1] who showed that the 
distribution of TN is approximately normal with mean NM 
and standard deviation N1/2S. Thus 

, r dG ~)2 JC dG d2G -) 

/ L-NM \ 
Nt/2S 

where $ is the normal distribution function 

(26) 

$(x)=(2ir ) - • i: exp(-t2/2)dt. 

This approximation is valid asymptotically as N — oo, but the 
rate of convergence is slow, so that some form of im
provement is needed for practical applications. 

The realization that the probability of bundle failure could 
be reformulated as the probability of a random walk crossing 
a certain curved boundary led to an improved version, 
described by Daniels [26, 27] in the context of a related 
problem in epidemic theory and further investigated by 
Barbour [28] and Smith [29]. This consists of replacing the 
asymptotic mean NM by NM + N]/i\B where A is an ab
solute constant whose value is approximately 0.996. For the 
definition of X see any of the cited papers. The new ap
proximation (which will be referred to as the first im
provement) is then 

/L-NM-0.996NyiB\ 
^ ' = * ( ^ ) • (27) 

A second improvement, described by Barbour [30], in
volves a correction to the asymptotic variance as well. The 
mean is again taken to be NM + NW3\B but the variance is 
now given by NS2 + TV273 <f> B2 where 4> is another absolute 
constant whose numerical value is -0.317. Thus the second 
improvement yields the approximation 

P(AQ-gf L-NM-0.996N^B X 
1 V(7VS2-0.317iV2 / 352)1 / 2 / ' K ' 

It is useful to rewrite the approximations (26), (27), and (28) 
in the following simpler forms: 

r 

P[N> =$CjN-

p± N) = *(VAT 

7 
x- 1-0.996/3 N~ 

7 

- 0.996 N-2/i 

V(72-0.317/32JV-1/3) 

• ) • 

(Daniels) 

(1st improvement) 

V (2nd improvement) 

(29) 
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where 

NM y= s 
~M 

P--
B 

1A 
(30) 

The parameter x is the ratio of the load per fiber (L/N) ap
plied to the bundle and the maximum load per fiber M that 
can be supported by an infinite bundle of fibers. It is con
venient to introduce the parameters 1 and l c defined by 

1 = 
NA 

1,= 
M 

~~A 
so that x = 

1 
(3D 

The parameter 1 is the nominal stress applied to the bundle 
and l c is the strength of an infinite bundle of fibers. 

Now suppose that the strength distribution for single fibers 
follows the Weibull law 

PF(a)=l-exp[-(a/0o)m]. 

The parameters 1 c, y, and /3 are then given by 

\c = oQm~yme-x>"\ 7 = { e 1 / m - l ) 1 / 2 , (3=m-vie
2/l?m) 

The question of finite ac has not been discussed so far in 
this section. If the inequality 

(32) 

(33) 

u 

~ 
c 
a. -\ 
f-
m 
> o 
a 
k- 2 

*-Ul 

—" 
o 
2 1 
X _ a. 
< 

-\ .8 

m = 4 

, » w ^a. 

1 
0.9 
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1 
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£-*. \ v-Cv%% 
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1 
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\-p 
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-

y 
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I 
1.2 

l / lc 

Fig. 1 The dependence of AP/r on 1/1 c when m = 4 for the first im
provement to Daniels' formula 

W l c 
Fig. 2 The dependence of APp on 1/1 c when m = 4 for the second 
improvement to Daniels' formula 
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Fig. 3 The dependence of APF on 1/1e when m = 12 for the first im
provement to Daniels' formula 

l / l c 

Fig. 4 The dependence of APF on 1/1e when m = 12 for the second 
improvement to Daniels' formula 

ac>L0/A (34) 6 Numerical Results 

holds, then the foregoing approximations continue to apply 
without any change. The reason for this is that the ap
proximations depend only on the local behavior ofPF(a) near 
a = L0/A, and this is not changed if (34) holds. If (34) were 
false then the approximations would not be valid because of 
the nonexistence of derivatives of G(L) = PF{L/A) atL = 
Aac, but in this case the fibers ultimately fail at stress ac itself. 
In practice (34) is usually satisfied. 

Numerical computations of the failure probabilities of 
bundles of fibers have been performed on an ICL 2972 
computer. Numerical estimates of the exact failure 
probabilities have been obtained, for bundles of N = 50, 100, 
150, 250, and 500 fibers, using the relations (17) and (18) for 
the special case when the survival probability of a single fiber 
has the Weibull form 

Ps(<r) = exp(-(<7/ff0r). (35) 
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The quantities a{
r
N), r = 0, 1. .N- 1 appearing in the relations 

(17) and (18) are expressed in terms of the parameter l / l c as 
f r \H r *wc follows 

AN) N 1 
(36) 

<r0 N— r \c 

where use has been made of the expression (33) for the 
strength lc. of an infinite bundle of fibers. Numerical 
calculations have been performed for the values m = 4, 8, 12 
for a variety of values of the parameter l / l c lying in the range 
0.8 < l / l c < 1.3. The asymptotic approximations P\N) and 
P^ defined by the relations (29), (31), and (33) have also 
been calculated for the same values of the parameters m and x 
= l/lc. so that failure probability differences APF defined by 

APF = P<Nl(L)-PjNHL), 7=1,2, (37) 
could be computed. The universal constant X was set equal to 
1 for these computations. Very little change was observed 
using the more precise value A = 0.996. 

Figures 1 and 2 illustrate the accuracy of the first and 
second improvements, respectively, when the Weibull ex
ponent m = 4, for bundles of N = 50, 100, 150, 250, and 500 
fibers. The curves for TV = 500 are incomplete because of 
numerical errors. The criterion for accepting numerical 
solutions of the relations (17) and (18) is that 

f><">(L) = l, 

where Pj:N) is the probability, defined by (15), that just r 
fibers, in a bundle of N fibers, fail when the load L is applied. 
It is interesting to note that the first improvement shown in 
Fig. 1 is most accurate when l / l c = 1 whereas the second 
improvement shown in Fig. 2 is most inaccurate in this region^ 
Also worthy of note is the slow convergence of fhe~ accurate 
probabilities to the asymptotic solutions as iV increases to 500. 

Corresponding estimates of the failure probability dif
ferences when the Weibull exponent m = 12 are shown in 
Figs. 3 and 4. Again the first improvement is most accurate 
when l / l c = l whereas the second improvement is most 
inaccurate in this region. Again the convergence is slow as N 
increases to 500. It is interesting to observe from Fig. 4 that 
the second improvement consistently underestimates the 
failure probability. As to be expected, a comparison of Figs. 1 
and 3 and Figs. 2 and 4 reveals that the scatter in the strength 
of the bundles is reduced when m is increased from 4 to 12. 

15 

The maximum errors of the asymptotic formulas are however 
increased. 

Other aspects of the approximations are illustrated in Figs. 
5-7. In Fig. 5, the exact failure probability is plotted against 
load on normal probability paper, for m = 4 and N = 50, 
250. It may be seen that the resulting curve is, in each case, 
almost exactly a straight line, which suggests very strongly 
that a normal approximation is appropriate. In Fig. 6 the 
corresponding probability density functions dP/dL are 
plotted, for m = 4 and N = 250, derived from the exact 

99 

c 90 

°"80 
>. 

•S 70-

I 6<>-
fc-50-

5 40-

%X~ 

£ 2 0 

250 fibres^ 

,-50 fibres 

2 3 4 5 6 7 8 9 10 

2 x 1 / I max 

Fig. 5 The dependence of P(N)(L) on L plotted on normal probability 
paper, N = SO and 250, m = 4. 

Fig. 6 The four density curves (i.e., P', PQ, P{, P2') for m = 4, N = 250 
(closed symbols denote 1/1 c values for which the cumulative 
distribution was known) 
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probabilty of failure and each of the three approximations. 
This figure shows very clearly that most of the error in P0 
arises from the approximating distribution being shifted to 
the left compared with the true distribution, and this is 
corrected by using Pt in place of P0. The second im
provement, giving rise to P2, is a distribution with slightly 
smaller variance than P{, but Fig. 6 does not by itself provide 
clear evidence for preferring P2 to P, . 

The final figure, Fig. 7, illustrates the calculation of relative 
error in the lower tail. This problem is of particular interest 
with regard to series-parallel structures (Smith and Phoenix 
[21]) but is of more general interest because, in most 
engineering applications, one is really concerned with 
designing systems with very low failure probability. When, as 
here, some approximation is used for calculating the failure 
probability, it is important that the relative error be small 
when the true probability of failure is small. In Fig. 7 the 
relative error 

\6PF\/P™ (L) = \PW (L) -Pl,N) (L) l/P'"l (L) 

is plotted for m = 4, N = 250, and each of the two im
provements (/ = 1,2). The corresponding curve using P0 was 
not plotted, but it is clear from Fig. 6 that P0 is a non-
competitor in this range (0.9 < l / l c < 0.99). Figure 7 is not 
very easy to interpret because the error in the second im
provement changes sign at approximately 3 x 10 3, but it 
may be seen that, within the range of values plotted, the 
relative error in the second improvement is consistently less 
than that in the first. Similar behavior was observed for other 
values of m and N. Thus it appears that the second im
provement is distinctly better than the first improvement from 
this point of view. 

In conclusion, either of the two improvements is sub
stantially better than the original asymptotic approximation 
of Daniels [1]. The choice between the two improvements is 
not nearly so clear-cut, but the evidence available suggests 
that the second improvement performs significantly better in 
the lower tail of the distribution. 
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The Crack Problem for a 
Nonhomogeneous Plane1 

In this paper the plane elasticity problem for a nonhomogeneous medium con
taining a crack is considered. It is assumed that the Poisson 's ratio of the medium is 
constant and the Young's modulus E varies exponentially with the coordinate 
parallel to the crack. First the half plane problem is formulated and the solution is 
given for arbitrary tractions along the boundary. Then the integral equation for the 
crack problem is derived. It is shown that the integral equation having the derivative 
of the crack surface displacement as the density function has a simple Cauchy-type 
kernel. Hence, its solution and the stresses around the crack tips have the con
ventional square-root singularity. The solution is given for various loading con
ditions. The results show that the effect of the Poisson's ratio and consequently that 
of the thickness constraint on the stress intensity factors are rather negligible. On 
the other hand, the results are highly affected by the parameter @ describing the 
materialnonhomogeneity in E (x) = E0exp(Px). 

1 Introduction 
In practical applications the material nonhomogeneity 

becomes an important factor to be considered particularly in 
two classes of problems. The first is a group of problems in 
geophysics in which, because of the size of the medium, the 
spatial variation of the material constants cannot be assumed 
to be negligible. The foundation and contact problems in soil 
mechanics and the wave propagation problems in the earth's 
crust may be mentioned as some of the examples. The second 
group of problems relates to the fracture of essentially 
nonhomogeneous solids. "Hydraulic fracturing" of the 
medium which consists of sandstone and shale, the fracture of 
structural materials with periodically varying material 
properties (as in certain laminated structures), and the 
fracture of variety of fuse-bonded materials used in elec
tronics industry are some typical examples. The distinguishing 
feature of these materials is that the material constants are 
continuous and generally differentiable functions of the space 
coordinates, whereas in the standard particulate, layered, and 
fiber-reinforced composites the material constants are 
discontinuous functions. The consequence of the discon
tinuous behavior of the material in crack problems is that the 
nature of singularity of the stresses at the crack tip that is on 
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the interface and at the point of intersection of a crack and the 
interface is quite different from the singularity exhibited by a 
crack tip that is fully imbedded in a homogeneous medium. 
Even though no systematic study of the problem appears to 
have been made, it is reasonable to expect that in 
nonhomogeneous materials with continuous and continuously 
differentiable elastic constants the nature of the stress 
singularity at a crack tip would be identical to that of a 
homogeneous solid. The existing solutions of crack and punch 
problems in certain specific nonhomogeneous materials seem 
to support this view. 

In most of the existing solutions to problems relating to 
nonhomogeneous solids it is assumed that the material is 
isotropic, the Poisson's ratio is constant, and the Young's (or 
the shear) modulus is either an exponential or a power func
tion of a space variable [1]. In the wedge problem described in 
[2] the class of functions E(r, d) for the Young's modulus 
leading to a feasible solution has been investigated. Some 
sample studies of the Boussinesq and contact problems for a 
nonhomogeneous half space may be found in [3-8]. The 
corresponding "torsion" problem for a half space is 
described in [9, 10]. The equivalent crack problems in a 
nonhomogeneous medium under torsion and under antiplane 
shear loading are discussed in [11] and [12], respectively. In 
the studies described in [3,8], the shear modulus is assumed to 
be /x0 exp (yy) and in [12] n0 exp (ox +&y), where y = 0 is 
either the boundary of the half plane or the plane of the crack. 
In [4-7] and [9-11] it is assumed that /x=/*0 \y Im, (0</n<l). 
This latter assumption clearly has the undesirable physical 
feature in that atj> = 0 the shear modulus becomes zero. It is 
particularly difficult to attach any physical meaning to the 
solution of a crack problem carried out under this assump
tion. This difficulty has been removed in the crack problem 
considered in [13] where it was assumed that the shear 
modulus is given by n = fi0/(\ +c\y\), where cis a constant. It 
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Fig. 1 The crack geometry in the nonhomogeneous medium and the 
variation of the Young's modulus E = Eoes* 

should again be noted that the solutions given in [3-13] are 
based on the assumption that the Poisson's ratio is constant. 

In the studies mentioned in the foregoing (with the ex
ception of [12] which deals with the relatively simple problem 
of antiplane shear) it is assumed that in the direction(s) 
parallel to the boundary of the half plane or the plane of the 
crack the shear modulus does not vary. In the case of fracture 
of such a nonhomogeneous medium since, generally, the 
plane of the crack is not a plane of symmetry, the inplane 
shear component of the stress intensity factor would not be 
zero and hence the propagating crack would eventually align 
itself parallel to the direction in which the modulus varies. In 
the problem considered in this paper it is then assumed that 
the crack is located on the y = 0 plane, the Young's modulus is 
an exponential function of x, and the Poisson's ratio is 
constant (Fig. 1). 

2 Formulation of the Crack Problem 

Consider the plane elasticity problem for a non-
homogeneous solid in which the Poisson's ratio v is constant 
and the Young's modulus E is a function of x and y. Let 
F(x,y) be the Airy stress function. The stresses are given by 

d2F d2F 

~dxT' 

d2F 

dy2 ' "yy dx2 ' "xy dxdy' ( 1 ) 

Substituting from (1) through the Hooke's Law into the 
compatibility equation, for the plane problem we obtain 

SE 9 9E 3 
+ • E2v4F-2<-lx-Yx+^rTy)v2F 

„ „ / 3E dE r d2E\ d2F +2(I + 4^^-Wa^ 

d2E 1 d2F d2E 
-E—^ + vE-

dxl -} dy2 J dx2 

dE 

+ [<•%)'-»(£) dy 

d2E dx2 

-E^r^r- + l>E dy2 ]-?£=0. 
d2E J dy 

(2) 

Equation (2) is for the generalized plane stress. The dif
ferential equation for plane strain is obtained by replacing E 
and v by E/(l - v2) and p/(l - v), respectively. From (2) it may 
easily be verified that if we let 

E = E0 exp (Px+yy), v = constant (3) 

the differential equation becomes one of constant coefficients 
which may be written as 

V4F-2[^3—+yy)v2F+W2-Vy2) 
d2F 

~dxT 

+ 2(l + v)l3y-
32F 

+ (Y2 
, d2F 

- W 3 2 ) - ^ = 0 . (4) 
dxdy * ' dy2 

In problems involving the study of localized phenomena 
such as perturbation in stress state due to the presence of a 
crack or a punch, a material representation such as (3) would 
not be very unrealistic. In most cases a reasonable ap
proximation to the actual distribution of E(x,y) can be ob
tained by adjusting the constants E0 , /?, and y. Referring to 
Fig. 1, in this problem we will further assume that E is in
dependent of y. Thus, >• = 0 is a plane of symmetry provided 
we also consider only those external loads that are symmetric 
with respect to y = 0. It is therefore sufficient to consider one 
half of the medium (-<x><x<co,y>0) only. By letting 7 = 0 
in (4) the differential equation of the problem becomes 

/ d3F 93F \ , d2F , d2F 

dxdy2/ dx2 dy2 

Note that (5) reduces to the standard biharmonic equation for 
j3 = 0. 

Assuming the solution of (5) in the form 

1 f°° 
F(x,y)= — \ f(y,a)e-'xada, (-<x><x<°°,y>0), 

2ir 

we obtain 

d4f 

(6) 

d2f 
- 4 - + (2//3a - 2a2 - /32 v) - 4 + («4 - 2/(3a3 - /32a2)f= 0. (7) 
d>4 dy1 

If we now look for a solution to (7) of the fo rm/= cxpimy) we 
find 

m4 + (2i0a - 2a2 - (32 v)m2 + (a4 - 2//3a3 - /?2a2) = 0. (8) 

The solution to (8) is found to be 

mx = -/w3 = [ ( - ? , + < y 2 ) / 2 ] * , m2 = 

-mA = [(-yl-y2)/2VA, 

yt = 2iPa - 2a2 - /32 v, y2 = (/?4 v2 - 4//?3 va + 4/32 va2) Vl. (9) 

In (9) roots rrij are ordered in such a way that Re(ml)>0, 
Re(m2)>0. It is assumed that the problem in the absence of 
the crack has been solved under the actual loading conditions, 
and that the crack length 2a is "small" compared to other 
(planar) dimensions of the solid. Through a superposition the 
singular part of the solution may then be reduced to that of an 
infinite nonhomogeneous plane with the self-equilibrating 
crack surface tractions as the only external loads. Thus, in the 
problem of interest the stresses and displacements vanish for 
(x2 + y2) — 00, and the solution to (7) may be-expressed as 

f(y,a) = Ai(a)e-mi>' +A2(a)e-'"2>:, (0<y<°°). (10) 

From (1), (6), and (9) it then follows that 

°xAx,y) = ; - IjAjm/e-Ve-^da, (11) 
l i t J -00 j 

o„(x,y) = - - U " ^Aje-^e-
zir •) -0° , 

Ma, (12) 

°xy(x,y) = 
2-K 

aJ£,Ajmje-"'jye-iXada. (13) 

This completes the formulation of the problem for the half 
plane ^ > 0 in which the functions Ax and A2 are determined 
from the two boundary conditions at y = 0, - 00<x< 00. For 
example, let the half plane be subjected to tractions 

oyy{xfi) = o{x), axy{x,Q) = T{x), ( - oo<x<oo) (14) 
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on the boundary y = 0 and be kept in equilibrium by a 
resultant force applied to the medium at infinity which is 
collinear with a force defined by the following x and y-
components: 

Px=\ iix)dx, Py=\ a(x)dx. (15) 

From (12) and (13) Ax and A2 may then be obtained as 
follows: 

Ax(a) = ( — T + I ) . 
m, —rrij \ or 

(16) 

By substituting from (27) and (12) into (20) we obtain the 
following integral equation to determine g(x): 

I f „, f°° E0mim2 lim — g(t)e»dt\ lo , ° \ R ^-+o27rJ-<j J - " W + ia)(mx
2-m2

2) 

(mle-m2y-m2e~'"iy)ei(^x)o: da=p(x), \x\ <a. (28) 

To investigate and to separate a possible singular part of the 
kernel in (28) the asymptotic behavior of the inner integral 
must be examined. From (9) we observe that for lal—oo 
ffli — I a I and m2 —• I a I. Now, by expressing the inner integral 
in (28) as 

A2 

where 

(a) = - ( l + ) - ^ : — , (17) 
\ m, — m2t a m, — m-, a S CO 

K(y,a)e*'-X)a da 
- o o 

(29) 

Gi(a) = ( a(x)eixadx, Q2(x) = \ T(x)eixadx. (18) 
J - oo J - oo 

3 The Integral Equation 

We assume that the original cracked solid is loaded sym
metrically in such a way that 

CTX),(X,0) = 0, -<x<x<oo. (19) 

In the perturbation problem, in addition to (19), we then have 
the following mixed boundary condition 

oyy(x,+0)=p(x), {-a<x<d), (20) 

v(x,0) = 0, a<\x\<oo, (21) 

where p(x) is a known function and v is the y-component of 
the displacement. From (13) and (19) it follows that 

mlAl+m2A2=0. (22) 

To obtain the second equation to determine Ax and A2 we 
introduce a new unknown function g (x) by 

and by noting that any singular part h may have must be due 
to the behavior of AT at I a I —oo, we may write h as follows: 

h(x,y,t) = \ lK(y,a)-Ka,{y,ct)]e">,-*a da 
J - oo 

• i : Ka,0>>°t)eK'-x)a da. (30) 

where K„ is the asymptotic value of K(y,a) for large values of 
I or I. The first integral in (30) is uniformly convergent and, 
therefore, when substituted into (28) the limit can be put 
under the integral sign. It may easily be shown that 

*„0',«)=!?Tv- ,<,"> 
2; lal 

and the second integral in (28) may be expressed as 

(31) 

- °° 2/ I a I 
, - \a\y [cos(t—x)a + i 

g(x)=—v(x,+0), 
dx 

(23) 

From (21) and (23) it is seen that g(x) =0for \xl > a a n d 

g(x)dx = 0. (24) 

sin(t-x)a]da = 

Also, by defining 

M(a) = 

Bo(f-s) 

(t-xf+y2 

m<m-, 
pHt~x)a 

(32) 

(33) 

i: 
(/3 + /a)(/Hi +m2) 

and by substituting ^ = 0 in the first integral, equation (30) 
may now be written as follows: 

By using the Hooke's law from (11) and (12) it can be shown 
that 

h(x,y,t) = E0^o [M(a)+M(-a) 

d 

dx 

1 I f " 
v(x,y)=- — =— W+ia) 

2w E(x) J -<*> 

[—i-(or' + vml
2)e-miy 

L m, 

+ — 2 - (a 2 + vm2
2)e-m^Ae-ixada, (y>0). (25) 

m-, J 

-sin(t-x)a]da + 
EoU-x) 

(34) 

Equations (23) and (25) would then give 

(3 + ia f Ax 

»i 

\-ia\ Ax . 
-— {a1 + vm/) 
i0 L m, 

+ -^-{a2 + vm2
2)\ = \ g(t)e^+ia)'dt. 

m2 J J -a 
(26) 

From (22) and (26) the functions Ax and A2 are now deter
mined as follows: 

E 0 WiW 2
2 

Ada)--
a2(mx

2 -m2
2)(l3 + ia) 

\" g(t)ew+ia)'dt = m2 

m. 
A2. (27) 

(t-x)2+y2 ' 

Finally, if we substitute from (34) into (28) and go to limit we 
obtain 

1 \°a r e13' 1 1 + K 
— +k(x,t)\gU)dt=-—p(x), (-a<x<a),(35) 

where the Fredholm kernel is defined by 

{
Oo 

[M(a)+M(-a)-sm(t-x)a]da, (36) 

and E 0 /2 is replaced by 4/i0/(l +K) in order to cover both 
generalized plane stress and plane strain problems. Here /̂ 0 is 
the shear modulus a tx = 0, i.e., n0 =E0 /2(1 + v), K = 3 - 4 C for 
plane strain, and K = ( 3 — v)/(l + v) for the generalized plane 
stress. Note that for (8 = 0, A'=A"W) k{x,t) = 0, and (35) reduces 
to the known integral equation of the simple (Mode I) crack 
problem for a homogeneous plane. 

For numerical solution the interval ( -« ,«) is normalized by 
defining 

s=t/a, r = x/a, <fi(s)=g(t), n(r,s) 

= k(x,t), q(r)=p(x),-\<(r,s)<\, -a<(x,t)<a. (37) 
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In terms of the normalized quantities the integral equation 
(35) and the single-valuedness condition (24) may be expressed 
as 

I f 1 r e®as 
I f 1 r epas n 

— +n{r,s)\4>(s)ds 

1+K 

4^o 
q(f), ( - ! < / • < ! ) , 

j (t>(s)ds = 0. 

(38) 

(39) 

4 Stress Intensity Factors 

The index of the singular integral equation (38) is + 1 . 
Therefore its solution is of the following form: 

„a0s * ( * ) = 
G(s) 

• l < K l , (40) 
VT^72 

where G(s) is a bounded function. The unknown function G 
may be determined from (38) and (39) to any desired degree of 
accuracy by using a Gaussian integration technique to solve 
the singular integral equation (see, for example, [14]). By 
observing that the left-hand side of (35) gives oyy(x,0) for 
\x\ >a as well as for \x\ <a, through a simple asymptotic 
analysis, the Mode / stress intensity factors at the crack tips 
defined by 

kx (a) =lim \f2(x-a)ayy(x,0), 

A:!(-fl) = lim V2( - x - a)ayy(x,0), 
x a 

may be expressed in terms of G(s) as follows2: 

* , («) = 
l + /c 

M0G(l)Vfl, 

(41) 

(42) 

(43) 

Note that ji0exp(/3«) -n(a) and the expressions (43) and (44) are identical to 
those found for the homogeneous materials. 

kl(-a)=- poW-iyfi. 
I + K 

(44) 

From (23) and (37) it is seen that after obtaining G(s) the 
crack surface displacement may be calculated as 

v(x) Cx/a G(s) -i: "esds. (45) 
-i V i - 5 2 

It should again be emphasized that the structure of the 
integral equation (35) is essentially the same as that of a 
homogeneous medium, namely its kernel has a simple Cauchy 
singularity. Therefore, its solution and consequently the stress 

y 

pQ-/a 

0.7 

Fig. 2 Stress intensity factors in a nonhomogeneous medium having 
a uniformly pressurized crack (E(x) = E0e^ , v = 0.3, plane stress 
conditions) 

Table 1 The normalized stress intensity factors for various loading 
conditions for the case of generalized plane stress {•< = 0.3) 

Ba 

-Q 

0.01 

0.10 

0.25 

0.50 

0.75 

1.00 

k,(a) 

e„E„^a 
0 0 

1.0 

1.008 

1.078 

1.202 

1.435 

1.713 

2.048 

k,(-a) 

e o E 0 ^ 

1.0 

0.992 

0.925 

0.820 

0.665 

0.535 

0.429 

k,(a) 

E l E o ^ 

0.5 

0.505 

0.552 

0.640 

0.814 

1.031 

1.301 

k,(-a) 

£ i E <A 

-0.5 

-0.495 

-0.453 

-0.389 

-0.302 

-0.234 

-0.181 

k,(a) 

P<A 

1.0 

1.003 

1.025 

1.060 

1.113 

1.162 

1.209 

k,(-a) 

P o ^ 

1.0 

0.997 

0.973 

0.930 

0.861 

0.797 

0.740 

k^a) 

P-l^" 

0.5 

0.500 

0.500 

0.498 

0,495 

0.489 

0.483 

k,(-a) 

p ^ 

-0.5 

-0.500 

-0.500 

-0.499 

-0.495 

-0.489 

-0.480 

k,(a) 

P 2 ^ 

0.5 

0.501 

0.506 

0.515 

0.528 

0.540 

0.552 

k,(-a) 

p2S 

0.5 

0.499 

0.493 

0.483 

0.466 

0.450 

0.435 

k^a) 

P3/5-

0.375 

0.375 

0.375 

0.374 

0.372 

0.369 

0.366 

k,(-a) 

p 3 ^ 

-0.375 

-0.375 

-0.375 

-0.375 

-0.373 

-0.370 

-0.366 

Table 2 The normalized stress intensity factors for various loading 
conditions for the case of plane strain (>• = 0.3) 

Ba 

-»0 

0.01 

0.10 

0.25 

0.50 

0.75 

1.00 

( l -v 2 )k , (a) 

eoE<A 
1.0 

1.008 

1.078 

1.203 

1.439 

1.721 

2.063 

( l - v ^ l - a ) 

=oEo^ 
1.0 

0.992 

0.925 

0.821 

0.667 

0.539 

0.433 

( l - v ^ k ^ a ) 

ElE0/a-

0.5 

0.505 

0.552 

0.640 

0.814 

1.032 

1.304 

O-v^l-a) 
E l E o ^ 

-0.5 

-0.495 

-0.453 

-0.389 

-0.302 

-0.234 

-0.181 

k,(a) 

P0 / f 

1.0 

1.003 

1.026 

1.061 

1.117 

1.170 

1.222 

k,(-a) 

"cA 
1.0 

0.997 

0.973 

0.931 

0.863 

0.801 

0.745 

k^a) 

p^/S 

0.5 

0.500 

0.500 

0.498 

0.494 

0.489 

0.483 

^ ( - a ) 

p ^ 

-0.5 

-0.500 

-0.500 

-0.499 

-0.495 

-0.489 

-0.481 

k,(a) 

p2 / i" 

0.5 

0.501 

0.506 

0.515 

0.529 

0.542 

0.555 

k^-a) 

P2'
/a 

0.5 

0.499 

0.493 

0.483 

0.466 

0.451 

0.436 

k,(a) 

p3/a 

0.375 

0.375 

0.375 

0.374 

0.372 

0.369 

0.366 

k,(-a) 

P3/T 

-0.375 

-0.375 

-0.375 

-0.375 

-0.373 

-0.370 

-0.366 
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Table 3 The effect of Poisson's ratio on the stress intensity factors 

s 
t -

an
e 

Q-

i 
s 
E 

V 

0.01 

0.15 

0.30 

0.50 

0.01 

0.15 

0.30 

0.50 

(08 = 0 

k,(a) 

1.425 

1.430 

1.435 

1.441 

1.425 

1.431 

1.439 

1.45? 

5) (Eg = 

"iqM 
E o E o * ^ 

0.660 

0.662 

0.665 

0.668 

0.660 

0,663 

0.667 

0.677 

= E0 for 

k,(a) 

E l E 0 * ^ 

0.813 

0.813 

0.814 

0.815 

0.813 

0.813 

0.814 

0.817 

plane stress, 

k , ( -a) 

E ] E 0 ^ 

-0.302 

-0.302 

-0.302 

-0.302 

-0.302 

-0.302 

-0.302 

-0.302 

k, (a) 

P 0 ^ " 

1.104 

1.108 

1.113 

1.119 

1.104 

1.109 

1.117 

1.134 

E0* = E0/1 -

k , ( -a ) 

P0/a" 

0.856 

0.858 

0.861 

0,865 

0.856 

0.589 

0.863 

0.874 

k,U) 

P j / i " 

0.494 

0.494 

0.495 

0.495 

0.494 

0.494 

0.494 

0.495 

v for plane strain) 

k,(-a) 

Pj /a 

-0.494 

-0.495 

-0.493 

-0.496 

-0.494 

-0.495 

-0.495 

-0.497 

k, (a) 

P2/a 

0.525 

0.526 

0.528 

0.529 

0.525 

0.527 

0.529 

0.533 

k , ( -a ) 

p2^a 

0.464 

0.465 

0.466 

0.467 

0.464 

0.465 

0.466 

0.469 

k, (a) 

p3/a-

0,372 

0.372 

0.372 

0.372 

0.372 

0.372 

0.372 

0.372 

k , ( -a ) 

p3 /a 

-0.372 

-0.373 

-0.373 

-0.373 

-0.372 

-0.373 

-0.373 

-0.374 

x/o 
Fig. 3 Crack surface displacement v(x) in a nonhomogeneous and a 
homogeneous medium under uniform pressure Po applied to the crack 
surfaces. (E(x) = E0exp(0.5x/a) for the nonhomogeneous medium, E(x) 
= E0 for the homogeneous medium, v = 0.5, /3a = 0.5, plane stress 
conditions.) 

state around the crack tip would have the conventional 
square-root singularity (see (40)-(42)). 

5 Results and Discussion 

The crack problem is solved for two types of loading. In the 
first it is assumed that the plane is loaded by prescribing the 
displacements in such a way that in the uncracked medium we 
have 

eyy(xfi) = e0 + 6l(x/a), exy(x,0) = 0, axx(x,0) = 0. (46) 

From (46) the crack surface tractions in the perturbation 
problem may be expressed as follows: 

ayy(x,0)=p{x) = -eoEoe0* 

- e , E 0 ( y ) e ' t e , axy(x,0) = 0, lx\<a. (47) 

In the second type of loading crack surface traction p (x) will 
simpy be assumed to be a polynominal of the form 

'M—"MT)-"(TY MTY • (48) 

In the normalized integral equation (38) the material 
parameter /3 enters into the kernel through a/3 only. Thus the 
calculated stress intensity factors are given with a/3 as the 
variable. The results are given in Tables 1 and 2. Note that in 
the nonhomogeneous material problem since the kernel is also 
dependent on the Poisson's ratio v, the solution must be 
obtained for a given value of v, and for the cases of plane 
stress and plane strain separately. Tables 1 and 2 give the 
normalized stress intensity factors at the crack tips a and -a 
for plane stress and plane strain cases, respectively, by 

assuming that c = 0.3. The results are obtained by taking only 
one of the six input parameters e0, e,, p0, px, p2, and p3 

nonzero at a time. Since the problem is linear the results can 
be superimposed in any suitable manner. Note that for /3a—0, 
that is, for a given a and 0—0 or a given /S and a—0, as ex
pected, the stress intensity factor ratios reduce to those of a 
homogeneous medium, which, for an arbitrary tractionp(x), 
are given by 

1 P" / a + x \ 1/2 

M f l ) = - r \ p(x){ ) dx, (49) 
—/a J -a \ a-x / 
iria . 

1 f7 

k\(-a)=—r\ p 
/ a-x \ 

dx. (50) 

For /3a = 0.5 the effect of Poisson's ratio on the stress in
tensity factors in plane stress and plane strain cases is shown 
in Table 3. The results show that this effect is rather in
significant. Consequently, as seen from Tables 1-3 the dif
ference between plane stress and plane strain results is also 
insignificant. 

Since the effect of the Poisson's ratio and the thickness 
constraint on the stress intensity factors is negligibly small, 
from the results given in Tables 1 and 2 it is possible to 
develop simple empirical formulas for the stress intensity 
factors. For example, from Fig. 2, reproducing the results for 
a uniformly pressurized crack (columns 6 and 7, Table 1) it 
may be seen that the stress intensity factors vary ap
proximately linearly with the variable /3a. Hence, in this case, 
the following approximate formulas may be used to evaluate 
the stress intensity factors: 

fc,(a)=poVa(l+0.22/3a), (51) 
Ar1(-a)=p0Va(l-0.26 l8a). (52) 

A sample result showing the crack surface displacement 
v(x) for a uniformly pressurized crack as calculated from 
(45) is given in Fig. 3. The figure also shows v(x) for a 
homogeneous material. As expected, in the nonhomogeneous 
medium in the stiffer portion of the material, the crack 
surface displacement is smaller that that of the homogeneous 
medium, and the reverse trend may be observed in the less 
stiff portion of the material. 

In this as well as in the previous studies the assumption of 
constant Poisson's ratio has been made for analytical reasons. 
Even though not very conclusive, the results given in this 
paper show that neglecting the possible special variation of 
the Poisson's ratio is not a very restrictive assumption. 
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Fig. 1 Photographic cross section showing subsurface inclusion in a
test roller
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Fig.2 Problem configuration with inclusion

work was later corrected by Evan-Iwanowsky [5]. Although
Barjansky mentions in his conclusions that he was working on
extending his method to the case of a rigid inclusion in place
of the hole, such a solution was apparently never published.
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Introduction

Impurities in the form of near-surface inclusions are known
to have detrimental effects on the life of bearing surfaces. The
actual failure mechanisms produced by these impurities,
however, are not quantitatively well understood. An inclusion
in an actual test roller specimen is shown in Fig. 1. The crack
emanating from the top of the inclusion indicates one possible
failure mechanism by which an early pitting failure may be
associated with the presence of an inclusion. The stress field
associated with such impurities can provide a mechanism that
serves as a catalyst for crack propagation.

This paper considers the interaction of a near-surface
circular inclusion with a rough indenter sliding on the bearing
surface. The actual loading found in combined rolling and
sliding contacts may be approximated by such a model (Fig.
2). The resulting stress calculations should provide a firm base
on which further study of inclusion-related failure
mechanisms can be built.

Inclusion problems for semi-infinite regions have received
limited attention in the literature, although some solutions do
exist (see e.g., [1-3)). In general, these solutions assume a
known distribution of inelastic strain within the inclusion,
and then seek the resulting stress distribution in the matrix.
Problems with complex external loadings and interaction
effects appear to be too cumbersome for these methods.

Problems involving subsurface voids have received
somewhat more attention than inclusion problems. In par
ticular, Barjansky solved the problem of a Boussinesq field
disturbed by a circular hole using bipolar coordinates [4]. His
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To apply this method to interaction effects would be very 
cumbersome. 

The solution presented in this paper considers the two 
extreme cases of both a rigid inclusion and a hole or void. 
Interaction effects are taken into account by assuming that a 
perfectly rigid, rough sliding indenter of parabolic shape acts 
on the surface. The analysis is two-dimensional; the inclusion 
and the indenter are assumed to be parallel cylinders. At
tention is focused on the variation of the contact stress 
distribution and the near-inclusion stress field as functions of 
defect size and location. The effect of varying the coefficient 
of friction is also considered, and results are presented in 
curves calculated numerically. 

Formulation 

The complex potentials of Muskhelishvili are used along 
with standard results for the half plane and circular region 
(see [6]). The stresses and displacements may be written in 
terms of the analytic functions 4> and \p as 

<7« + o > v = 2 [ 0 ' ( z ) + 0 ' ( z ) ] 

. - 2/ T, --2[zV(z)+V(z)\ 

(1) 

(2) 

2n(u + iv) =K 4>(z) - z 4>' (z) -i^zj (3) 

where z = x + iy, JX is the shear modulus, K = 3 - 4v for 
plane strain, and K = (3 - c)/(l + v) for plane stress, with 
Poisson's ratio v. 

The boundary conditions corresponding to a rigid, sub
surface, circular inclusion of radius a centered at the point Z\ 
and bonded to an elastic half space loaded by a rigid indenter 
with radius of curvature R and coefficient of friction / (see 
Fig. 2) may be written as follows: 

yy ^xy u i 

/ "yy + ?xy = 0; 

l * l<C "I (4) 

lxl>c l / ,„(z)=0 (5) 

UI<OoJ (6) 

u + iv = u0 + iv0-a e0 e'v; \z — Z\\=a (7) 

Herex0 , 80, and u0, v0 represent the rigid body translations 
of indenter and inclusion, respectively, e0 is the rigid body 
rotation of the inclusion, c is the half-width of the contact 
strip; and 77 is the argument of (z — Z\). To avoid having to 
deal with multivalued terms, the displacement conditions (4) 
and (7) are differentiated with respect to x and ??, respectively. 
This gives 

d-q 

\x\<c, l,„{z\=0 

(u + iv) = —i a e0 e"1; \z—Z\\=a 

(8) 

(9) 

The conditions of zero net traction and net moment acting 
on the inclusion will be accommodated by a proper choice of 
constants arising in the initial stage of the analysis. 

The boundary conditions corresponding to the void 
problem are the same as those given in the foregoing with the 
exception of equation (7), which is replaced by 

°n + i Tpr, =0; \z-Z\\=a (10) 

where z — Z\ = peir>. 

Method of Solution 

The solution is constructed in three stages. First, the 
general solution to the displacement or the stress boundary 
value problem for a hole in an unloaded half plane is ob
tained. Second, the solution to the problem of a rigid rough 

indenter sliding on a half space is determined. Finally, the 
potentials corresponding to the interaction of these solutions 
are calculated using contour integration. The superposition of 
the resulting solutions then satisfies all the required boundary 
conditions except for condition (7) or (10). Employing the 
final boundary conditions leads to a Fredholm integral 
equation of the second kind that can be solved numerically, 
thus giving the desired solution. 

1 Solution for a Hole in a Half Plane. Consider first the 
general solution to the displacement or stress boundary value 
problem for a hole of radius a, Y, centered at the origin in an 
infinite plane. Using results in [6] and [7] pertaining to cir
cular regions, the solution may be expressed as 

*o(«)= 
©U); 

yQ(z); 

Izl >a 

\z\ <a 

a2 ( - / a2 \ ~) id 
%(z) = — ( 0 ( z ) + 7 Q{ — ) -z 9 ' ( z ) J + - ^ 

where 

eu) - S , 
p{t)dt B C 

+A+- + — 
z z ir t-z 

For the displacement problem 7 = K and 

u d 
P(t)=—-.-r.(ux + wy) 

Kiri at 

while for the stress problem 7 = 1 and 

1 
P(0 = 

2TT/' 
(opp+i TPS) 

(11) 

Izl >a 

(12) 

(12) 

(13) 

(14) 

with t = ae"1. 
For the case of no loading or rotation at infinity, and 

requiring zero net load and net moment to be acting on the 
hole, the complex constants A, B, C, and real constant d may 
be determined from considerations of the proper behavior of 
*o (z) and ^0 (z) for Izl — 00. In the case of the rigid in
clusion this gives (see e.g., [7]) A = B = C = 0, and 

(15) d=-KRe)i\ p(t) t dt\ 

For the void, all four constants are zero. 
To obtain the solution for the case of Y being centered away 

from the origin at a point Z\, the following transformation is 
sufficient (see [6]): 

* i ( z ) = * o ( z - Z i ) 
(16) 

•*i(z) = ¥0(z-zl)-zi *6(z-Zi) 
It is now necessary to clear the line Im {z} = 0 of tractions 

arising from *) and ^ so as to determine a half-plane 
solution. This is accomplished most conveniently by em
ploying analytic continuation as discussed in [8] and [9]. 
Introducing the additional potential <£>2 (z) such that 

* 2 ( « ) = 

* , ( « ) - « * , ' ( « ) - ¥ ( * ) ; /,„[z)<0 

* i (z ) ; / ,„U)>0 
(17) 

It can be that the tractions, given by 

ffw —' T "yy xy-$i (Z) + # , (Z) +Z *i'(z) + * i (Z) 

+ $2(z)-<f>2(z) + (z-z) *2 '(z) (18) 

do indeed vanish for Im[z\ — 0 - . Thus, the following two 
potentials give the general solution to the displacement or 
stress boundary value problem for a hole in an unloaded half 
plane,I,„{z) < 0: 

616/Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



* 3 (z) = * , (z) -*, (z) -z * ' (z) - * , (z) 

%(z)=*l(z) + *l(z)+z:*i(z) 

+ 2 z $ i ' ( z ) + z 2 * i " ( z ) + z * ' ( z ) (19) 

2 A Sliding Rough Indenter. Again using methods and 
results found in [6], the problem corresponding to the 
boundary condit ions (4)-(6) may be reduced to the following 
Hilbert problem (here the superscripts " + " and " - " refer to 
the upper and lower half planes, respectively): 

* + + m <t>-=g(*) (20) 

where 

m = = eaa 

(K+l)-if(K-\) 

( K + 1 ) - ; / ( K - 1 ) 

The solution to (20) is 

-^p{t)[F(z; z0) + a2 L(z; z0,zi,i) 

+ (Zi -z0) G (z; z0) 

+ ytH(z; z0, Zi, t)+a2 M (z; z0,Z\,i)]dt 

-id[G(z; z^ + Giz; z,)]] 
-2 /> ( l+ / / ) 

-x0 (26) 
tf(/c+l) 

where x0 represents the change in x0 due to the inclusion or 
void and is given by 

R(K+1) R 
XQ ( J r P(0 [Fa (z0) + a2 L . U o . W ) 

(21) 

*(z) = L g(t)dt 

where 

X{z) 

2-wi J -c X+ (t)(t-z) 

X(z) = (z + c) Vl-ah!(z-c),/l+a" 

+X{z) Pn (z) (22) 

Since X(z) = 0(z) for Izl — °°, the arbitrary polynomial, 
P„ (z), must be taken to be zero, and the following condition 
must be satisfied by g(t): 

g(t)dt 
= 0 (23) 

i-cX+(t) 
This condition leads to the determination of x0 in equation 
(4). In the absence of a disturbance in the half plane the 
solution thus becomes 

2(>(1+//) T , « 
*4(2) = ^ - — - T T - U - 2 C — 

R(K+l) L 7T 
-X(z) (24) 

3 Interaction Effects. To account for the interaction 
between the inclusion or void and the indenter, the vertical 
displacement effects on /,„ {z) = 0 due to <£>3 and ^ 3 are 
calculated and substituted into (23) and (22) with a change of 
sign. Thus the net displacement slope due to * 3 , ^ 3 and the 
interaction terms will be zero beneath the indenter, resulting 
in the proper matching of boundary condition (8). 

The vertical displacement slope arising from $ 3 and ̂ 3 is 
obtained by substituting (19) into the derivative with respect 
to z of (3), and may be written (recalling the definition of y 
andcO: 

IJXV' = (K+\)Im\ -
p(t)dt 

+ 
PU) dt 

r x-(t + Zi) (x-Zi)2 Jr x-(t + ii) 

•J 
[Zi-(zt+t)]p(t) dt t p(t)dt 

V [x-(t + zt)]
2 

+ 
a2 r 

f - Z i J 

( * - Z , ) J r x-(t + Zi) 

pjf) It id 
x-zi J r [x-(t + Zi)Y ( x -Z i ) 

(25) 

Putt ing (25) into (22) and (23), switching the order of in
tegration, and carrying out the resulting inner integrations 
using contour methods , leads to the following expression for 
the interaction potential: 

*5(z) = ~p-[\TP(t)[F(z; z0) + a2 L(z; z 0 , z , , 0 

+ (z\ - Z o ) G (z; Z 0 ) + T iH(z; z 0 , zx, t) 

+ a2 M(z\ Zo, Zi, t)] dt 

Aifi 2fi' 

+ ( z 1 - z 0 ) G „ (z 0) + 7 tH„(zQ, Zt t) 

+ a 2 M „ ( z 0 , Z i , t)] dt 

-\rpJt) F== (Zo) + «2 i „ (zQ, ZI, t) 

+ (zi - Z o ) Goo (z 0 ) 

+ ytH„ (Zo, Zi, i) +a2 M^do, zu i)\ dt 

+ W[Goo ( z , ) + G (z , ) ] ] (27) 

The functions F, F„, G, Goo, H, H„, L, L„, M, and Ma are 
given in the Appendix , and z0 = Z\ + t. 

4 Integral Equation. It is now necessary to satisfy the 
boundary conditions on the perimeter of the void or inclusion 
given by (10) and (9), respectively. Consider first the case of a 
void. The normal and shear stresses on the circle may be 
written 

< 7 „ „ + / r „ „ = * ( z ) + * ( z ) - e - 2 " [ z * ' ( z ) + ^ ( z ) ] (28) 

Substituting the various potentials into (28) and (10) and 
recalling the way in which *! was determined leads directly to 
a Fredholm integral equation of the second kind for the 
unknown functionp (s): 

-(app + i 7^)^=2^ ip(s) + ̂ Kv(s,s,t; p{t)) dt (29) 

Here s = ae'^o, and the term on the left-hand side of the 
equation represents the stresses due to the contact alone, 
embodied in $ 4 ( z ) . The kernel Kv (s, t, p(t)) is given by 

Kv(s, t; p(t))=$2(z)+(l+e-2h>°)$2(z) 

+ e-
2iio $2 ( | ) - {z-z) e~2i"o $2' (z) 

+ * 5 (z) +(1 +e-2 '"o)$5 (z) + e-2 ' ' 'o$5 (z) 

{z-z) e-2''o $5'(z) (30) 

where z = 5 + z, . 
The same procedure is used in the case of the rigid in

clusion. The displacement slope around T may be written: 

2fi— (u + iv) = / ( Z - Z I ) [ K * ( Z ) - * ( z ) 
on 

+ z e-2i" $ ' (z) +e~2i» * ( z ) ] (31) 

Substituting into (31) and (9) in analogous fashion leads to a 
similar integral equat ion to that obtained in the foregoing. 
The inhomogeneous term in equat ion (9) representing the 
rigid body rotat ion of the inclusion is related directly to the 
constant d. Using (15), e0 may be written as 

e0=-^1Re{i \ p(t) tdt] 
4 « r Jr Ajxa 

The integral equat ion is given by 

(32) 

- 2 ^ i - - (w + / y ) * , = 2 -w i KSP(S) 
dry 4 

+ \rKR(s,t; Pit)) dt (33) 
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Fig. 3 Contact stress beneath the indenter; c/a = 50.0; d/c = 0.03; 
e/c = 0.0; / = 0.1 
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Fig. 4 Contact stresses beneath the indenter for c/a = 10.0; e/c 
0.0; 1 = 0.1 
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Fig. 5 Contact stresses beneath the indenter for c/a = 10.0; d/c = 
0.15; f = 0.1. The solid line represents the Hertzian distribution; the 
dotted lines illustrate the effect of the inclusion at the three locations: 
e/c = 0.0,0.5,0.9. 

with 

KR(s,t; p(t))=is[i($2(z 

.(l+e-2''io)a>2(j:)_e-2''io *2(z) 

+ (z-z) e-2i*°$2(.z)+K *5(z) -(l+e-2!*o)$5(z) 

-e-2''»oa>5 (i) + (z-z)e-2h<o^(z)\ (34) 

Numerical Results and Conclusions 

Dimensionless forms of equations (30) and (33) were solved 
numerically using a collocation scheme employing Simpson's 
rule for the integrations. The resulting numerical solutions 
were then used to calculate the stress state at any desired 
location. Calculations were performed for various com
binations of inclusion and void size, location, and surface 
coefficient of friction. The results of these calculations are 
summarized in Figs. 3-9. 

Figures 3-6 show the behavior of the contact stresses. It can 
be seen that the presence of a subsurface void or inclusion can 

12.0 

O 9.0 

X 

a. 6.0 

i-
o 3.0 

c/a =10.0 

X / C / a = 50.0 

.60 1.00 -1.00 -.60 - .20 .20 
x/c 

Fig. 6 Contact stress distribution showing effect of inclusion size; 
d/a = 3.0(nondimensionalization);e/c = 0.0; f = 0.1 

Inclusion 

1.00 
X / c 

Fig. 7 Comparison of contact stress distribution for a void and an 
inclusion; c/a = 3.8; d/c = 0.79; e/c = 0.0; 1 = 0.1 

cause a significant alteration in the contact stress distribution. 
For small inclusions {c/a » 1) the effect is similar to that of 
an asperity (see Fig. 3). The surface disturbance diminishes 
rapidly as the depth of the inclusion beneath the surface in
creases, as is shown clearly in Fig. 4. In Fig. 6 the 
distributions corresponding to a void and an inclusion with 
identical geometries are compared. Variations due to 
horizontal movement of an inclusion are shown in Fig. 5, and 
inclusion size effects are illustrated in Fig. 7 (note that d/a is 
held constant, not d/c). 

Subsurface stress behavior is depicted in Figs. (8) and (9), 
which are contour plots of maximum shear stress for the case 
of a void and inclusion, respectively. The geometry 
corresponds to that of Fig. 6 and was chosen to allow com
parison with some photoelastic experimental results obtained 
by Yamamoto and coworkers [10], who have recently studied 
voids. Figure 8 shows good agreement with the work of 
Yamamoto both qualitatively and quantitatively. Due to 
expense, rigorous and exhaustive comparisons were not 
performed. 

In the absence of any defect, the maximum shear stress 
(c Tmax/p) would be about 0.25. For the case of the void 
shown, this value is increased to 0.73, while for the case of the 
inclusion it becomes 0.43. The void gives a larger increase, but 
the maximum occurs near the sides of the void boundary. For 
the inclusion, however, the maximum occurs near the top and 
bottom of the inclusion, thus placing this effect nearer the 
surface. For large inclusions this could be significant. 

It can be concluded that the observed detrimental effects of 
subsurface defects on bearing surfaces are directly related to 
the stress field variations caused by these defects. This is not 
surprising, but now that the nature of these stress field 
variations can be quantified it should be possible to accurately 
model the actual mechanisms of defect-induced failures. 
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Internal and Edge Cracks in a 
Plate of Finite Width Under 
Bending1 

In this paper the title problem is studied by using Reissner's transverse shear theory. 
The main purpose of the paper is to investigate the effect of stress-free boundaries 
on the stress intensity factors in plates under bending. Among the results found 
particularly interesting are those relating to the limiting cases of the crack 
geometries. The numerical results are given for a single internal crack, two collinear 
cracks, and two edge cracks. Also studied is the effect of Poisson's ratio on the 
stress intensity factors. 

1 Introduction 
In many relatively thin-walled plate and shell structures 

through cracks may develop as a result of cyclic loading. To 
analyze this fatigue crack propagation process the stress 
intensity factor calculated from the elastic analysis of the 
structure appears to be the most widely used correlation 
parameter representing the severity of part-flaw geometry and 
the intensity of applied loads. In plates containing through 
cracks and subjected to membrane loading only, usually the 
solution obtained by ignoring local three-dimensional effects 
and by assuming the validity of conditions of the generalized 
plane stress seems to be quite adequate. Partly because of the 
practical importance of the problem of plates under mem
brane loading and partly because of the relative simplicity of 
the related elasticity problems, the two-dimensional crack 
problems have been studied very extensively. Even though in 
many applications the bending components of the external 
loads are also present, as in, for example, transversely loaded 
plates and structures undergoing flow-induced vibrations, the 
solution of the plate bending problem seems to have been 
carried out only for an infinite plate [1-5]. These studies have 
demonstrated the importance of transverse shear effects on 
the stress intensity factors and have shown that the bending 
results are sufficiently different from the plane stress results. 
It is, therefore, worthwhile to investigate the influence of 
finite in-plane dimensions, particularly that of stress-free 
edges on the stress intensity factors in plates undergoing 
bending. 

The problem considered in this paper is a relatively long 
rectangular plate containing collinear cracks perpendicular to 

1 This work was supported by NSF under the Grant ENO 78-09737 and by 
NASA-Langley under the Grant NGR 39-007-011. 

2Permanent address: Department of Civil Engineering, Istanbul Technical 
University, Istanbul, Turkey. 

Contributed by the Applied Mechanics Division for publication in the 
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Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, December, 1982. 

its long sides. Of particular interest is the investigation of the 
edge cracks and crack-free boundary interaction. As in [1-4] 
external loads are assumed to be symmetric with respect to the 
plane of the crack and a transverse shear theory [6, 7] is used 
to formulate the problem. 

2 The Formulation of Bending Problem 

Consider a relatively long flat plate of finite width which 
contains symmetrically located collinear cracks perpendicular 
to its sides (Fig. 1). It is assumed that x2=0 is a plane of 
symmetry with respect to loading and geometry and the 
problem in the absence of cracks has been solved under the 
given applied loads. Thus, through a proper superposition the 
crack problem may be reduced to a stress perturbation 
problem in which the self-equilibrating crack surface tractions 
are the only external loads. Also, it is assumed that the plate is 
acted on by a sufficiently large tensile membrane load so that 

fc-fhe' 
2d 

2a / 2c / 2a 

2b 

r s x. F=F=£ Mo 
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Fig. 1 The geometry of the plate 

SEPTEMBER 1983, Vol. 50 /621 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



there is no crack surface interference (on the compression 
side) in the bending problem. Thus, the results given in this 
paper should be considered together with the solution given in 
[8] where the corresponding generalized plane stress problem 
was studied for the same crack geometry as Fig. 1. 

By using the Reissner's transverse shear theory, the basic 
equations for elastic plates under bending may be expressed as 
follows (see, for example, [9] for the shell equations of which 
the following system is a special case) 

V4w = 0, 

1 - c 
K v 2 f i - f i = 0, 

2 

K V2 \j/-\p-W = 0, 

d\p \-v dQ 

Ix + _2_"17 ' 

Mr, 

Mv, 

Mr 

a* r 
h\4l 

d2t 

l an 
17 

d2^ K 
+ V + (1 - v)2 

dx2 dy2 2K ' dxdyl 

3 2 Q1 

a* I" 

g*(l - v) 

2h\4 

d2i, d2^ 

W +1"dxY ^ d - " ) 2 a 2 Q-| 
dxdyi 

(1) 

(2) 

(3) 

(4) 

, (5) 

, (6) 

t 
+ T d - « 

d2j 

dxdy 

d2Q 

< dy2 

d2Q 

Hx2 )]• 

Vr = 
dw K dfi d\l/ 

- T - + -=- (1 - ") - r - + dx 2 dy dx ' 

Vy = -
dw K dfl dih 

-= -r (1 - ») - = - + -T-
dy 2 ax dy 

(7) 

(8) 

(9) 

The dimensionless quantities which appear in (l)-(9) are 
defined in Appendix A. The dimensions are given in Fig. 1. In 
the usual notation Mu and Vh (ij= 1,2) are the bending and 
the transverse shear resultants ^ and /32 are the components 
of the rotation vector, ut, u2, and «3 are the components of 
the displacement vector, and a* is a length parameter 
representing the crack size (a* =a for c > 0 , d<b, a* = d for 
c = 0, d<b, Fig. 1). 

As in the corresponding plane stress problem [8], here it is 
assumed that X\ = 0 is a plane symmetry. Thus, in the per
turbation problem under consideration the solution of the 
differential equations (l)-(3) may be expressed as 

2 r°° 
w(x,y)= — \ (A, +yA2)e

 ay coscwc da 
IT Jo 

2 f00 

+ —• \ (C,cosh/3*+C2*sinh|8;0cos/3yG?/3, (10) 
IT J 0 

2 f°° fi(*>j0= — \ B{e
 r\y smax da 

•K J o 

2 poo 

+ — fi2sinh r2x sin/3y d/3, (11) 
•K JO 

2 f°° 
*Kx,y)= — I [_-^i +(?Kot-y)A2]e ay cosax da 

•K JO 

2 f °° 
+ — [-(C,+2K/3C2)cosh|3;c-C2xsinh/3x]cos/3j>rff3, (12) 

•w J o 

where 

r 2 i Vi r 2i [/i 

ri = W + -n—A 'r2 = \P1 + -^^\ ' (13) 

L K(l-l>)J L K(1-1>)J 

and the unknowns AX,A2 and B{ are functions of a, and C,, 
C2, and B2 are functions of 13. 

By substituting from (10)-(12) into (4)-(9) the components 
of rotation, the moment resultants, and transverse shear 
resultants are found to be 

0x(x,y)= — \ (-[-A, +(2Ka-y)A2]ae-ay 

TT JO 

+ —\-B ie~riy)sinax da 

r 
+ — | - ( C , +2K/3C2)/3sinh/3x-C2^cosh|8A:-C2 sinh/3x 

T Jo L 

=-2?2sinh r2x cos|8y dfi, (14) 
7 J 

Py(x,y)= — j f l [ - ( - ^ , + ( 2 K a - ^ M 2 ) a e - ^ 

5 , e ''i^' cosax da jr°i 

+ — \ [[(C, +2/c/3C2)coshl8A:+C2x sinh)3x]/3 
TT JO L 

/•2 "1 

T- B2 cosh r2x sin/3y d/3, 
7 J 

(15) 

-(a2(l - c)(2/ca-y)-2va)A2 \e-a y 

B{e
 ri> 'jcosaxc?a+ j ( — ^ / 3 7-252cosh7-2x 

1-v 
2~Q7 ' l 

•y / JO \ y 

- ( 1 - K)/32C,cosh/3x- [(1 - v)x/32sinhf3x 

-2/3(1 + (1 - c)K/32)cosh|3x]C2) cos#j> d^t, (16) 

g* 2 
~T4 

M- (^ ) =^T[r( [- ( i-" ) a M' 
+ (a2(l - v)(2Ka-y) + 2a)A2]e~°'y 

•S."(-

7 ' 

( l - y ) 

72 

arj 5 j e ^i^Jcoscw rfa 

^r2J32cosh /-2x+ ^2(1 - c)C,cosh/3x 

+ K - T " -2^ jcosh/3x 

+ (1 - c)/32x sinh/3xl C2j cosfiy dpi, 

A/V(X0')= ^ 7 - [ ] 0 ( t 2 « M i +(2a 2 >--2a-4 K a 3 M 2 ] ( 

j ^ ^ + ^ ^ ^ - n ^ J s i n o x r f a 

(17) 
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sinew: da 

+ j o [ —(02+r2
2)fi2siiih/-2* 

+ 2j32Cj sinh/3x + (2/32x cosh|8x 

+ (2/3 + 4/c/33)sinh/3;c)C2l sin/3y rf/SJ, 

Kx(x,>')= j Q ^2Ka2A2e^ay + -^B^'^A 

2 f °°r /3 
+ — - j .B 2 sinh r2x 

ir Jo |_ 7^ 

-2K/32C2sinh/3x]cos/3.y t//3, 

K,(x,^)= j \2Ka2A2e-a>'+ ^Bie-'iAcosax da 

H 1 |~-B2cosh /-2^+C! cosh/Jx-

i Jo L 72 

+ (2/c/32cosh/3.x + /3sinh/3x)C2| sin/3y tf/3, 

10(«*)2 

By using the expressions (16), (18), and (19) the boundary 
conditions (22) may be reduced to 

B2 4 - sinhr2b' - C2 2/32K sinh/36' 
7 

(18) If 
7T JO ( / - , 2 + / 

5!sin ft'a da, 

32+r2
2 

' 2 2 

7 

(19) 

(/-,2 + /32)(a2 + /32) 

sinh /-26' -2di32sinhi36' -2C2/3[/36'cosh/36' 

2 f°°r 2a2/3 
+ (l+2/32K)sinhj36']= — 

7T JO L 

_ /3T
2+2«2/3 1 

(a2+/32)(/-,2 + /32)J ' 

(32) 

./<72(a2+/32)2 

sin 6 ' a rfa, (33) 

B2—^-l3r2 cosh/-2£'-C1(l-e)/32cosh/3&' 
7 

-C2[(l - i/)/326'sinh/3&' +2/3(1 +(1 - c)/32/c)cosh/36'] 

(1 - e)2 f °T 2a/3272/c 

where 

72 = /c(l-r) /!2 

(20) 

(21) 

lit Jo L (a2 + 2)(/-,2 + /32) 

o;(a2-/32)"[ 

(a2 + /32)2 J 
5 , cosfr'a da. (34) 

Because of the assumed symmetry, it is sufficient to con
sider the problem for 0<Xi<b, 0 < A : 2 < O O only. Thus, 
referring to Fig. 1, the boundary and symmetry conditions of 
the problem may be expressed as follows: 

Mxx{b',y) = 0, Mxy{b',y) = 0, Vx{b',y) = 0, 0<y<°o, (22) 

Mxy(0,y) = 0, Vx(0,y) = 0, £ , (0 ,^ = 0, 0*y«», (23) 

Mxy(x,0) = 0, K,,(jt,0) = 0, 0<x<b', (24) 

Myy{xfi) = m(x), c'<x<d', (25) 

Py(x,0) = 0, 0<x<c', d'<x<b', (26) 

where the normalized length parameters are defined by 

b'=b/a*, c'=c/a\ d'=d/a*. (27) 

From the expressions (14), (18), and (19) it may be seen that 
the (symmetry) conditions (23) are identically satisfied. By 
using the five homogeneous conditions (22) and (24), five of 
the unknowns AnBhCj, ((=1,2) may be eliminated. The sixth 
unknown may then be determined from the mixed boundary 
conditions (25) and (26). By substituting from (18) and (20) 
into the homogeneous conditions (24) we find 

A,= 
l + v 

' 1 _ 4a2 

If we now define 

•Bu A2 
1-

Aa 
Bt 

d 

dx 
/3,(x,+0)=/(x), 0<*<Z>', 

from (15), (26), and (28) it can be shown that (Fig. 1) 

fi,(a)=-2 j f . /(')si sinatf dt, 

(28) 

(29) 

(30) 

Equations (30)-(34) indicate that all of the unknowns in the 
problem can be expressed in terms of the new unknown 
function/(0. It is also seen that all of the boundary conditions 
(22)-(26) except (25) are satisfied. The equation to determine 
/ ( 0 may, therefore, be obtained by substituting from (30)-(34) 
and (17) into (25). From the formulation of the problem one 
may observe that the unknown functions A,, A 2, and B, refer 
to the "infinite" plate and should give the kernel found in [4]. 
Indeed, after some simple manipulations it may be shown that 

g*( l -y 2 ) rrf' r 3 + y / 1 1 \ 

2TT//X4 }cfU)l~TT7\7^x' + J+x') 

_ 4K(1 - v) V 1 1 1 

l + v l(t-xY + (t + x)3l 

f °° r 4(32 

+ hm C, cosh/Jx: 
y-+oJo L 1 + v 

8 / 82 

+ - (Kfi3cosh0x+ —x sinh/3* 
l + v \ 2 

—/3cosh/3.x:)c2 

l — v / 

[1 - v) 1 
; r2(i B2cosh r2x\cos^y d/3 = m(x),c' <x<d', (35) 
l — v J 

and 

Ad<*)=-
l + v 

la2 [ f(t)sinat dt, 

2«(1 - v) 
1 

where K2 is the modified Bessel function of the second kind. 
By solving (32)-(34) for C,, C2 , and B2 and by substituting 
into (35) we find 

g*(l - v2) f"' r / 3 + v / 1 1 \ 
2TT/JX4 J C Iv l + v \ t - x + t + x) 

1-vfd' 
A2{a)= f(t)sinat dt. 

la J c 
(31) 

4K(1 - v) / 1 1 \ 

l + v \(t-x)3 + (t+x)3) 
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+ -^\-^-K2(y\t-x\) + ~K2(y\t + x\)])+k(.x,t) 
1 + v L t-x- t + x J / 

-k(x,-t)\f(t)dt = m(x), c'<x<d', (36) 

where the Fredholm kernel k(x,t) is given by 

f ° ° r r 3 + v l-v "1 
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l + v D 
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l+ e -26 ' / 3 

+ — [ ! - ( & ' - O f f l 
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2 

(!-»-)[ y (*>' - 0 - t f ( l _ e - 2 & ' 0 ) (38) 

(39) 

2fl2 l + e - 2 6 ' ^ / 

7Z 1 -e~2b r2 
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If the cracks are internal cracks as shown in Fig. 1, then 
from (26) and (29) it follows that 

\cJ(t)dt = 0. (41) 

Thus , the integral equation (36) must be solved under the 
additional condition (41). 

From the following asymptotic behavior of K2(z) for small 
values of z 

(40) 

*2fe)=4--4- +0(«2logz), 
zl 2 

(42) 

it may be shown that the kernel of the integral equation (36) 

has only a Cauchy-type singularity. Hence, the solution is of 
the form 

/ (0 = 
F(t) 

, c'<t<d', (43) 
(t-c')Vl(d' -t)Vl 

and the bounded function F(t) may be obtained by using the 
numerical method described, for example, in [10]. 

If the plate contains a single symmetrically located crack, 
i.e., for c = 0, d<b (see Fig. 1 and 3), by using the symmetry 
of the problem and by observing that f(t) = -f(-t), (36), 
(41), and (43) may be expressed as 

d ( i - " 2 ) [ r f ' (T 3 + y 1 4K(1 - v) 1 

2irh\4 i d II \ + v t-x \ + v {t-xf 

4 1 , , 1 
+ — - - K2(y\t-x\)\ 

1 +V t-X -I 

+ k(x,t)lf(t)dt = m(x), -d'<x<d', (44) 

J: f(t)dt = 0, 

At) 
FU) 

-d<t<d, 

(45) 

(46) 
Jd2-t2' 

where a* =d is used for the normalizing length parameter 
(Appendix A). 

3 The Stress Intensity Factors 

In the symmetric plate problem under consideration the 
bending component of the Mode / s t r e s s intensity factor at the 
crack tips is defined by (Fig. 1) 

k,c(.x3)= lim [2(c-xx)]
v' a22{xxfi,x3), 

x{~c 

kiAX})= lim [2(xj -d)]'Aa22(Xi,0,x3). 

(47) 

(48) 

Let ab be a stress ampli tude calculated on the plate surface 
and used for normalizing the stress intensity factors. For 
example, in a plate subjected to uniform bending M22 =M0 

away from the crack region 

ah=6M0/h
2. (49) 

The stress intensity factors are then normalized with respect to 
ab4a*. If the stress intensity factors on the plate surface are 
defined by 

k(c) = klc(h/2), k(d)=ku(h/2), (50) 

it is sufficient to calculate k(c) and k(d) in terms of which we 
have 

M* 3 )=^*(c) , kldQc3)=-^m. (51) 

We now note that (36) gives the normalized bending 
resultant m(x) on y = Q outside as well as inside the crack. 
Thus , a relatively straightforward asymptotic analysis would 
show that [11] 

^ I c w ) 1 

x3 hE 

h/2 4 Xx~c 
lim ~<J2{xi - c) 

J*02 
dx, 

kid(x3) = 
x3 hE 

— limV2(f i f -* , ) 
h/2 4 x,-d 

_902 

dx, 

From (43) and (51)-(53) it then follows that 

m= 
hE 

4«*ab 

F(c'), k(d) = 
hE 

A^7b 
F(d'). 

(52) 

(53) 

(54) 
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In plane elasticity problems for cracks it is known that in 
the close neighborhood of a crack tip xx = d, x2 =0 we have 

g22fri.0)= . ' +0(1), (55) 
V2(x, - d) 

k, = - —~ lim ^Ud^Xx)T— [«2(*i, +0) - u2(X], - 0 ) ] , 
1 + K0 A-j - d W ] 

(56) 

where kx is the Mode / stress intensity factor, /j. is the shear 
modulus, K0=4-3V for plane strain, and K0 = ( 3 - V)/{\ + v) 
for the generalized plane stress. In the symmetric bending 
problem under consideration crack surface displacement is 
given by 

u2(xl,+O,xi)=x301(xi,+O). (57) 

From (48), (53), and (55)-(57) it may be observed that the 
results found from the solution of the plane elasticity and the 
bending problems given by (53) and (55) are identical 
provided K0 is selected as (3 - v)/(l + v) (i.e., if the value for 
plane stress rather than for plane strain is used for K0). Also, 
as shown in [9] and [11] the transverse shear theory used in the 
present analysis gives an angular distribution for the asymp
totic stress state around the crack tip which is identical to that 
found for the plane elasticity problem. 

4 The Edge Cracks 

An important special case of the problem described in Fig. 
1 is the edge cracks for which d=b and c > 0 . In this case as x 
and t approach the end point d'=b' simultaneously, the 
kernel k{x,t) given by (37) becomes unbounded and con
sequently influences the singular nature of the solution. Since 
the integrand in (37) is bounded in any finite interval in 0 
£/3<°o, the unbounded terms in k(x,t) will be due to the 
asymptotic behavior of the integrand. Thus, by separating the 
asymptotic part of the integrand, equation (37) may be ex
pressed as 

k(pc,t)= \ °°[K(x,t,fi-Ka,(?c,t,ft]dP + \ °°Ka(?c,t,fidp. 
Jo Jo 

(58) 

evaluated in closed form. After a somewhat lengthy analysis 
similar to that described in [8] we obtain 

Ka,(x,t,P)dP = ks(x,t) = 
1 

2b' -x-t 

6(b'-x) 4(b'-x)2 

{Ib'-x-tf . (2b'-x-t)2 (59) 

One may note that ks(x,t) given by (59) is identical to that 
found for the plane edge crack problem given in [8] and, 
together with the Cauchy kernel l/(t-x), constitutes a 
generalized Cauchy kernel. 

Referring to the definition of f(t) given by (29) and the 
boundary condition (26), it is seen that the condition (41) is 
not valid for the edge crack and, as pointed out in [8], is not 
needed for the solution of the integral equation (36). In this 
case the generalized Cauchy kernel kg(x,t) = \/(t-x) + ks(x,t) 
has the property that kg(x,b') = 0, kg(b',t) = 0, and / ( / ) is 
nonsingular at t = b'. Thus, the numerical solution of the 
problem is obtained by letting 

f(0 = 
y/t-c' 

c'<t<b'. (60) 

5 Results and Discussion 

The first integral in (58) is bounded and the second may be 

The problem is solved for three crack geometries shown in 
Fig. 1,3, and 4 for a uniform bending moment M22 =M0 (per 
unit plate width) away from the crack region. The results for a 
symmetrically located internal crack of length 2c? are given in 
Tables 1-3 (see the insert in Fig. 3). Since the problem has 
three length parameters, namely h, b, and d, the results 
depend on two dimensionless length constants. Table 1 shows 
the normalized stress intensity factor as a function of bid for 
fixed values of b/h. One may note that, as expected for 
{bld)-~ 1 the stress intensity factor becomes unbounded. Also, 
for fixed plate dimensions b and h in the other limiting case of 
d~0 the stress intensity ratio is seen to approach unity, which 
is the result given by the plane elasticity solution for an in
finite medium with a through crack. These trends are clearly 
observed in Fig. 2 where the asymptotes are indicated by 
b/h = constant lines. The behavior of the solution for the 
limiting case of (d/h)—0 may also be shown analytically. 
Referring to (44), in this case the problem is one of an infinite 

d / h 
Fig. 2 The stress intensity factor in a plate of finite width containing a 
symmetrically located single internal through crack which is subjected 
to uniform bending moment M22 =MQ away from the crack region (see 
insert in Fig. 3); v = 0.3, ab =6M0lh

2 

M(x.) 

Fig. 3 Distribution of the bending moment /W22('<i,0) = M(x1) in the 
plane of the crack for a plate containing a single symmetric crack and 
subjected to/W22(x-|,0)= -M0 on the crack surface - d < x 1 <d 
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Table 1 Stress intensity factor in a plate of finite width containing a 
symmetrically located single crack and subjected to uniform bending 
(Mo) away from the crack region, 

b = 2h 

b/d 

-> • 00 

40 

20 

10 

5 

2.5 

2 

1.5 

1.04 

+1.0 

k(d)/abJ3 

+ 1.0 

0.9887 

0.9697 

0.9296 

0.8747 

0.8694 

0.9094 

1.0664 

3.7426 

+ -

b 

b/d 

+ «. 

40 -

20 

10 

6.666 

5 

4 

2 

1.04 

1.02 

1.01 

+1.0 

= 4h 

k(d)/ob /3" 

+ 1.0 

0.9680 

0.9231 

0.8530 

0.8125 

0.7910 

0.7812 

0.8320 

3.4252 

5.1526 

7.4209 

- > - CO 

b 

b/d 

+ ™ 

60 

30 

15 

10 

7.5 

6.0 

3.0 

1.5 

1.04 

1.01 

+1.0 

v — 0.3, aD = 

= 6h 

k(d)/abJS 

+ 1.0 

0.9676 

0.9218 

0.8491 

0.8045 

0.7780 

0.7620 

0.7502 

0.9282 

3.2040 

7.1933 

- » - CO 

= 6M0/f) 

b 

b/d 

-> CO 

80 

40 

20 

13.333 

10 

8 

4 

2 

1.04 

1.01 

+1.0 

MFig. l .c: 

= 8h . 

k(d)/ab/a~ 

+ 1.0 

0.9676 

0.9213 

0.8476 

0.8019 

0.7737 

0.7556 

0.7267 

0.7817 

3.0449 

6.9928 

+ m 

= 0) 

b 

b/d 

+ „ 

100 

50 

25 

12.5 

10 

7.5 

5 

2.5 

2 

1.04 

1.01 

+1.0 

= lOh 

k ( d ) / a b ^ " 

+ 1.0 

0.9675 

0.9210 

0.8469 

0.7716 

0.7526 

0.7332 

0.7166 

0.7347 

0.7702 

2.9256 

6.8141 

Table 2 The effect of Poisson's ratio on the stress intensity factor in a 
plate of finite width containing a single crack and subjected to uniform 
bending (ab = 6M0lh

2,b/h = 10, Fig. 1 c = 0) 

b/d 

+ CO 

100 

50 

25 

12.5 

10 

7.5 

5 

2.5 

2 

1.04 

1.01 

+ 1.0 

v = 0 

+ 1.0 

0.9583 

0.9002 

0.8119 

0.7278 

0.7074 

0.6868 

0.6689 

0.6850 

0.7192 

2.8152 

6.6721 

-+ 00 

<\0)l 

v = 0.2 

+ 1.0 

0.9650 

0.9151 

0.8368 

0.7587 

0.7392 

0.7194 

0.7023 

0.7197 

0.7547 

2.8916 

6.7715 

- » • CO 

va 
v = 0.3 

+ 1.0 

0,9675 

0.9210 

0.8469 

0.7716 

0,7526 

0.7332 

0.7166 

0.7347 

0,7707 

2.9258 

6.8141 

+ » 

v = 0.5 

•+ 1.0 

0.9717 

0.9307 

0.8638 

0.7938 

0.7758 

0.7573 

0.7416 

0.7612 

0.7975 

2.9881 

6.8886 

-* -

Table 3 Stress intensity factor versus width-to-crack length ratio in a 
plate containing a single crack and subjected to uniform bending 
{y = 0.3, d/h = 1, ff0 = 6M0lh

2, Fig. 1, c = 0) 

b/d 

k(d)/ob^3" 

+ 1 

+ . 

2 

0.9094 

4 

0.7812 

8 

0.7556 

10 

0.7526 

20 

0.7488 

+ » 

0.7475 

plate for which the Fredholm kernel k(x,f) is zero. Noting that 
for c?—0 7—0, by using (42) it may easily be shown that in 
limit the kernel of the integral equation (44) would reduce to 
\/(t-x). Also, by observing that the crack opening 
displacement on the plate surface is u2 = $yh/2, mix) = 
M22/(h

2E) = M0/(h
2E) 

if we replace f(x) by 

f(x) =dpy/dx = (2d/h)dv/dx, 

equation (44) becomes 

E 1 frf' 1 dv 

1c ~df 

= o-6/(6£), and X4 = 12(1 - v2)d2/h2 

v = u2ixu + 0,h/2), (61) 

E I f " 
2 7T J -d' t-

dt = °b> -d' <x<d'{62) 

which is the integral equation for an infinite plane under 
uniform stress ab and for which the stress intensity factor is 
kid)=ab4d. 

In the bending problem the kernel of the integral equation is 
a function of the Poisson's ratio v. Therefore, unlike the plane 
elasticity problems the stress intensity factors in bending are 
dependent on v. Most of the results given in this paper have 
been calculated for p = 0.3. However, to show the influence of 
v on the stress intensity factors, for a central crack and for 
two edge cracks the results are also given for ^ = 0, 0.2, and 
0.5. Table 2 shows the results for the internal crack. It is seen 
that the stress intensity factor slightly increases with in
creasing Poisson's ratio. 

Table 3 shows the effect of b/d ratio on kid) for d/h = 1. 
Again, as b-^d kid) becomes unbounded, and as 6 —oo kid) 
is seen to approach the infinite plate result given in [4]. 

To give some idea about the distribution of the stresses in 
the plate, the bending moment M22ixi,0) = Mix) is given in 
Fig. 3. The result is obtained from (44) which shows that the 
moment is - M 0 for 0 <x^ <d, and has a singularity at 
X\ =d+0. The figure indicates that M22 is a monotonically 
decreasing function of xx. 

Some results for collinear cracks shown in Fig. 1 are given 
in Table 4. One set of results shows the stress intensity factors 
for fixed cracks and plate dimensions and for varying crack 
location. The other set of results shows the effect of crack 
length for a fixed crack location (as determined by its mid-
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Table 4 Stress intensity factors in a plate containing two sym
metrically located collinear cracks and subjected to uniform bending 
(Fig. 1, >• = 0.3, a = (d - c)/2,6/h = 10, <7(, = 6M0 /h2) 

2a 
c+d 

+1/9 

0.14 
0.15 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.96 
0.97 
0.98 
0.99 
+1.0 

b/h = 10 

k{c)/ob/a 

VI.0170 

0.7758 
0.7720 
0.7685 
0.7764 
0.7923 
0.8167 
0.8519 
0.9014 
0.9751 
1.1172 
1.3018 
1.3743 
1.4791 
1.6516 
2.0268 
- > CO 

k(d)/<jb/a" 

0.7835 
0.7765 
0.7685 
0.7720 
0.7803 
0.7916 
0.8058 
0.8232 
0.8447 
0.8734 
0.8944 
0.9000 
0.9066 
0.9148 
0.9265 

•+1.0134 

b/a 

- K o 

10 
8 
7.5 
6 
5 
4 
3 
2.5 
2.08 
-v 2 

c+d = b 

k(c)/abv /a' 

->• 1.0 

0.76846 
0.76058 
0.75969 
0.76299 
0.77550 
0.81218 
0.9442 
1 .2083 
3.1343 

-> CO 

k (d ) /a b ^T 

+ 1.0 

0.76847 
0.76060 
0.75971 
0.76292 
0.77552 
0.81212 
0.9432 
1.2041 
3.2639 

-> TO 

Table 5 Stress intensity factors in a plate of finite width containing 
symmetric edge cracks and subjected to uniform bending or membrane 
loading away from the crack region, ffb=6Mo//i 
(see insert in Fig. 3) 

,=Nn//7, X = 0.3 

c/b 

+ 0 
0.01 
0.05 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.98 
0.99 
+1.0 

Bending: k{c)/a^ 

b=10h 

-+ co 

8.7889 
3.4726 
2.2893 
1.5754 
1.3082 
1.1693 
1.0878 
1.0396 
1.0157 
1.0170 
1.0694 
1.1666 
1.3466 
1.4589 

->! .5869 

b=6h 

->- ca 

2.4567 
1.6656 
1.3690 
1.2171 
J.1130 
1.0800 
1.0583 
1.0665 
1.1369 
1.2645 
1.4383 

+1.5869 

/a" 

b=2h 

-> CO 

2.7957 
1.9359 
1.5802 
1.3922 
1.2849 
1.2266 
1.2069 
1.2320 
1.3501 
1.4798 
1.5452 

+1.5869 

Tension 

k(c)/am^T 

- J - CO 

2.9467 
2.1769 
1.8744 
1.7136 
1.6328 
1.6080 
1.5970 
1.5915 
1.5883 

-)-! .5869 

point). As c—0 or 2a/(c + d)~l it is seen that k(c) becomes 
unbounded which is expected. The somewhat unusual result in 
this case is the steep rise of k(d) to the single central crack 
value as c—0. As pointed out in [4], a smooth continuation of 
k(d) as c—0 would correspond to the "pinched" crack 
solution, the steep rise in k(d) being the result of the 
relaxation of the crack surface rotation /32 at xx = 0 from zero 
the the single crack value. Even though it does not seem to be 
possible to analyze this phenomenon in the bending problem, 
it can be done for the collinear cracks in plane elasticity. For 
example, from the expression given for k(d) [12] 

a0Vd k L" K(k) 
in an infinite plane containing two collinear cracks along 
x2 =0, c< \x{ I <d and subjected to uniform tension <j0 away 
from the crack region, if we consider k(d) a function of c, it 
may be shown that for fixed d 

kid} 
aVd 

- 1 and — Ar(d)--co for c -0 , (64) 
dc 

meaning that for c—0 the approach of k(d) to the single 
crack value is very steep. In (63) K and E are the complete 
elliptic integrals of first and second kind, respectively. 

The results for the edge cracks are shown in Tables 5 and 6 
and in Fig. 4. Table 5 and Fig. 4 also show the results obtained 

Fig. 4 Stress intensity factor in a plate containing two symmetric 
edge cracks which is subjected to uniform bending moment M 0 or 
uniform tensile stress am away from the crack region; » = 0.3, b/h = 10, 
ffj) =6M0lh

2,ab ' =abblc,am ' =omb/c where ab ' and am ' are the 
average net section stresses 
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Table 6 Effect of Poisson's ratio on the stress intensity factors in a 
plate containing symmetric edge cracks which is subjected to uniform 
bending away from the crack region, blh = 10, ab = 6M0lh

2 (Fig. 1, d = b, 
2a=b-c) 

c/b 

+ 0 

0.05 

0.1 

0.2 

0.3 

0.4 

0.5 

0,6 

0.7 

0.8 

0.9 

0.95 

0.98 

+ 1 

k(c)/ab>^" 

v = 0 
- y oo 

3.3451 

2.1681 

1.4744 

1.2197 

1.0889 

1.0132 

0.9695 

0.9495 

0.9548 

1.0127 

1.1159 

1.3003 

+1.5869 

v = 0.2 
+ TO 

3.4352 

2.2533 

1.5452 

1.2816 

1.1450 

1.0653 

1.0184 

0.9956 

0,9981 

1.0522 

1.1151 

1.3293 

+1.5869 

v = 0.3 
-J- co' 

3.4726 

2.2893 

1.5754 

1.3082 

1.1693 

1.0878 

1.0396 

1.0157 

1.0170 

1.0694 

1.1666 

1.3466 

+1,5869 

v = 0.5 
- > CO 

3.5360 

2.3514 

1.6281 

1,3548 

1,2118 

1.1274 

1.0769 

1.0510 

1.0502 

1.1000 

1.1943 

1.3631 

+1,5869 

from the plane elasticity problem for the identical crack 
geometry. The effect of the Poisson's ratio on the stress in
tensity factor in the plate under bending is shown in Table 6. 

The results given in the tables are self-explanatory. It 
should, however, be emphasized that (a) the stress intensity 
factor for the plate under bending increases with decreasing 
b/h ratio; (b) bending values are always smaller than those of 
the plane elasticity; (c) as c—b (or as the crack length 2a 
approaches zero) bending as well as the plane elasticity results 
approach that of a semi-infinite plane containing an edge 
crack (i.e., k(c) -~ 1.5869oVa, o=ab or o=a ,„) (see [8]); and 
(d) if the results are normalized with respect to a'^fc (rather 
than oVa), it is seen that as c—0 in both cases k(c)/a'4c 
approach 2/ir which is the value obtained from the closed-
form elasticity solution of an infinite plane containing two 
semi-infinite edge cracks and subjected to tension equivalent 
to an average net section stress a,,,', where a„,' = <jmb/c, 
ab' = abb/c (see Fig. 4). 

One reviewer raised a question with regard to the relevance 
of an interesting recent study [13] to the results given in this 
paper. The conclusion in [13] was that in cracked plates under 
bending the "thickness effect on the energy release rate in
tegral is minor," meaning that the energy release rate may be 
estimated with sufficient accuracy by using the classical 
theory. It is rather difficult to comment on the question. 
However, the following remarks may perhaps be worthwhile. 

(a) Equation (120) in [13] appears to give an estimate not a 
bound for the difference between the strain energy release 
rates calculated from classical and Reissner plate theories. 
Thus the difference estimated as (IR - I c ) / I c ~(4/VTO) (h/a) 
ln(h/a) may simply be the leading term of an expression 
which, for practical thickness-to-half-crack length (h/a) 
ratios, may have numerical values that are significantly 
different than the estimate (where IR and Ic are the Sanders 
integrals giving the energy release rate obtained from the 
Reissner and the classical theory, respectively). 

(b) For a thickness-to-crack length ratio of h/2a = 1/10 
the estimated difference AI/I is approximately 12 percent and 
becomes greater for larger (and somewhat more realistic) 
h/2a ratios. For some applications such approximations may 
not be acceptable. 

(c) Since the problem is linear, in both theories the path 
independent integral should give an energy release rate that is 
identical to the crack closure energy obtained from the 

corresponding asymptotic stresses and displacements at the 
crack tips. For example, in plates under general membrane 
and bending loads the crack closure energy may be expressed 
as [14] 

where k,„, ks, kb, k,, and kv, respectively, the "membrane," 
in-plane "shear," "bending," "twisting" and "transverse 
shear" components are related to the modes /, / / and ///stress 
intensity factors by 

k,(x3) = km+^j-kb, (66) 

k2(x3) = ks+-^k„ (67) 

^-H^) 2 ] * - (68) 

Even though the difference between the stress intensity factors 
(kb) given by the classical and Reissner theories in a plate 
under symmetric bending may be considered relatively minor, 
the difference for the skew-symmetric case (in which Modes / / 
and / / / are coupled) is both conceptual and quantitative and is 
far from being minor. 

One should again emphasize that the actual problem is one 
of three-dimensional elasticity. The foregoing comparison 
refer to two of the simplest approximations in which the 
problem is rendered two dimensional through certain 
thickness averaging of stresses. In crack problems, since the 
most important information is in the asymptotic solution 
around the crack tips, it would be preferable that the ap
proximate theory used satisfy certain minimum requirements, 
namely the asymptotic results given by the plate (or the shell) 
theory (i.e., the singularity and the angular distribution of 
stresses) should be compatible with the corresponding in-
plane and antiplane elasticity solutions, and the theory should 
contain all local relevant length parameters (h/a in plates, and 
h/a and Ry/a in shells). Reissner's transverse shear theory 
appears to be the simplest plate theory satisfying these 
requirements. Furthermore, as indicated in this section, in all 
limiting cases investigated in this paper the results reduce 
quantitatively to known elasticity solutions. Considering the 
approximate nature of the theory, this point is rather im
portant and is one more indication that the results may be 
accepted with certain degree of confidence. 
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A P P E N D I X A 

The normalized quantities for the plate bending problem. 

x = 

Mrr = 

xl/a*,y=x2/a*,z=x3/a*; 

Ui/fl*, v = u2/a*, w = ui/a*\ 

P\,Py=fa 

B 

^ M = ^ 2 M - h ^ -
h2E' yy h2E' xy~ h2E' 

an a22 <J\2 

E ' °yy ~ E ' °xy ~ E '' 

V{ V2 
— V = —- • 
hB' y hB' 

5E _ E 12(1--v2)a*2 

12(1 + v) BX4 
h2 

In the problem described by Fig. 1, a* =« for 0 < c < d < 
bsmda* = dforc = 0, d < b. 
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Impact Response of a Cracked 
Orthotropic Medium 
A solution is given for the problem of an infinite orthotropic solid containing a 
central crack deformed by the action of suddenly applied stresses to its surfaces. 
Laplace and Fourier transforms are employed to reduce the transient problem to the 
solution of standard integral equations in the Laplace transform plane. A numerical 
Laplace inversion technique is used to compute the values of the dynamic stress-
intensity factors, ki{t) and k 2 (t), for several orthotropic materials, and the results 
are compared to the corresponding elastostatic values to reveal the influence of 
material orthotropy on the magnitude and duration of the overshoot in the dynamic 
stress-intensity factor. 

Introduction 
When a structural component is subjected to impact or 

shock loading, transient stress waves are generated, and the 
propagation of these waves can cause high stress elevation 
especially in local regions surrounding mechanical defects or 
cracks. In particular, near the vicinity of a crack tip, the 
magnitude of the dynamic stress-intensity factor is con
siderably larger than the corresponding statical one and in 
many instances may trigger crack extension and eventual 
failure of the component [1-5]. Thus, a knowledge of the 
overshoot in the dynamic stress-intensity factor and the time 
interval in which it occurs is essential to determine the 
response and fracture behavior of a structural element 
deformed by a sudden state of loading. 

The purpose of this study is to determine the elastodynamic 
response of an orthotropic solid containing a crack under the 
action of impact loading. An infinite orthotropic medium in 
plane stress (or plane strain) is assumed to contain a central 
crack subjected to a sudden state of loading. The plane of the 
crack is assumed to coincide with one of the planes of elastic 
symmetry of the material. Both normal and in-plane shear 
loading are considered, and the aim is to determine the 
distribution of stress and displacement throughout the solid. 
In particular, attention is focused on finding the degree of 
influence of material orthotropy on the amplification of the 
dynamic stress-intensity factor and the elapsed time required 
to attain the peak value. 

Laplace and Fourier integral transforms are employed to 
reduce the two-dimensional wave propagation problem to the 
solution of a standard pair of dual integral equations in the 
Laplace transform plane. The solution of the dual equations 
is reduced to the determination of an auxiliary function 
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governed by a Fredholm integral equation of the second kind. 
Numerical methods are then employed to solve the Fredholm 
equation and to obtain the time dependency of the solution by 
way of a Laplace inversion technique [6, 7]. The dynamic 
stress-intensity factors for normal and in-plane shear loading, 
kx(t) and k2(t), are computed for several orthotropic 
materials and the normalized values are listed in tables and 
displayed graphically. For the orthotropic materials con
sidered, the overshoot in the value of kx (t) as compared to 
the analogous statical value is about 16-20 percent and takes 
place in a time interval of Cst/a = 2.2-2.6, while for mode 2, 
the amplification in the stress-intensity factor is about 4-15 
percent and takes place in a time interval of Cstla = 2.0-2.5. 
Here, a = half the crack length and C] stands for p,n/ p with 
Hl2 being the shear modulus of the material and p the mass 
density. In the isotropic solid Cs represents the velocity of the 
shear wave. The technique employed, which is similar to one 
recently used in reference [8] to solve the problem of a moving 
Grifith crack in an orthotropic medium, can be extended to 
treat internal and edge crack problems in orthotropic strips. 

Basic Equations 

Consider the plane problem of an infinite orthotropic 
medium containing a central crack of length (2a) and sub
jected to a sudden state of loading. Let Eh fiy, and py(i, j = 
1, 2, 3) denote the engineering elastic constants of the material 
where the indices 1,2,3 correspond to the directions (x, y, z) 
of a system of cartesian coordinates chosen to coincide with 
the axes of material orthotropy. In this system of coordinates 
the crack is defined by the relationsy = T O , \X\ < a, \z\ s 
oo. Since the problem under discussion is restricted to wave 
propagation in the plane, it is readily shown by setting the 
displacement component along the z-direction and all 
derivatives with respect to z to be zero that the displacement 
equations of motion reduce to [9] 

Cl l 
d2U d2U 

+ dx2 dy2 + (l+c12) 
d2v 

dxdy 

1 

Q2 

d2u 
(1) 
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d2v d2v d2u 1 d2v 

dy2 dxL dxdy Cj d r 

in which u, v are the x, /-components of the displacement 
vector, and Cy(i, j = 1,2) are nondimensional parameters 
related to the elastic constants by the relations': 

c„ = Ei/naW-^/EMi]. 

c22 = (E2/Et)cn } , (3) 

c12 = ^12c22 = ^21 c l l 

for generalized plane stress, and by 

C,, = ( £ , i / / i 1 2 A ) ( l - ^ 2 3 C 3 2 ) 

C22 = (E2/nl2A)(l-VnV3l) 

C\i = (El/nl2A)(v2i+ ~=rvl3v32) 
E\ 
Ei 

= (E2/lil2AXvn+ —v22vn) 
E2 

A = l-vl2v21-v2ivi2-p3ivn-vi2v2iv-sl-vni>2ii>n _, 

(4) 

for plane strain. The stresses are related to the displacements 
by the equations: 

du 
ax/Hi2 = cn —— 

du 
°yl\>-n = C12 -fa 

du 

dv 
+ C 1 2 - T -dy 

dv 

dy 

dv 
+ lx~ 

(5) 

In equations (1) and (2), the time variable may be removed 
by application of the Laplace transform relations 

/•(/>) = (7 (0 e~<" dt 
Jo 

fU) = -"-. ( r(p)e"'dp, 
2ir l J Br 

(6) 

where Br denotes the Bromwich path of integration which is 
line to the right-hand side and parallel to the imaginary axis in 
the p-plane. Applying relations (6) to equations (1) and (2) 
and assuming zero initial conditions for the displacements and 
velocities, the transformed field equations become 

2 „» d2u 

~dxT 

d2v* 

+ 

+ • 

d2U* 

~w 
d2V* 

~d~XT 

+ ( l+c 1 2 ) 

+ ( l+c , 2 ) -

d2V* 

dxdy 

d2u* 

• ^ = o , 

p2v* 
= 0, 

(7) 

(8) 
"• dy2 ' dx2 ' x ' ' '"'dxdy 

where the transformed displacement components, u* and v* 
are now functions of the variables x, y, and p . 

Normal Impact 

When the solid is subjected to a suddenly applied state of 
normal loading, the problem of applying stresses to the 

The same notation of reference [8] has been adopted here except that the 
lastic constants c/; (ij = 1, 2) of reference [8] a 

respect to m2 for the sake of algebraic convenience. 

surfaces of the crack - obtained by utilizing the usual prin
ciple of superposition- yields the following symmetry and 
boundary conditions in the / = 0 plane: 

Txy(x,0,t) = 0, Lvl <oo, (9) 

(jy(x,0,t) = -a0(x) H(t), 0 < b d < a , (10a) 

v(x,0,t) = 0, \x\>a (106) 

in which the crack surface traction, <j0 (x), is a known func
tion of A: and H(t) is the Heaviside step function. In addition 
to equation (9) and (10), all components of displacement and 
stress must vanish at remote distances from the crack region. 
In the Laplace transform plane these conditions become: 

T*y(x,0;p) = 0, all x, (11) 

o*(xfi;P) = -a0(x)/p, \x\<a, (12a) 

v*(x,0;p) = 0, \x\>a (126) 

To obtain an integral solution of the differential equations 
(7) and (8) subject to conditions (11) and (12), let 

A (s,y;p) sin(sx) ds, 

v*(x,y;p) = \ B(s,y;p) cos(sx) ds, 

(13a) 

(136) 

where A and B are arbitrary functions. Substituting from 
equations (13) into equations (7) and (8), the functions A and 
B are found to satisfy the simultaneous equations: 

(cus
2+p2/C2)A-

(s2+p2/C2)B-c22-

d2A dB 
- p - H l + c l 2 ) s - = 0 , (14a) 

d2B dA 
—^--(\+ca)s — =0, (146) 

A proper solution to equations (14) which vanishes for large/ 
is 

A(s,y;p) = At(s,p) e-^+A2(s,p)e-w 

B(s,y;p) = — At(s,p) e~w+—A2(s,p)e-w, (15) 
s s 

Here, A x and A2 are arbitrary functions, ctj (s,p) stand for the 
abbreviation 

aj(s,p) = 
cns

2+p2/c2-r 
.7=1,2, 

( l+c 1 2 )7; 

and y \ and y \ are the two roots of the quadratic 

c2274 + f(c?2 + 2c12 - c n c 2 2 ) s 2 - ( 1 + c22)p
2/C2

s]y2 

+ (cus
2 +p2/C2) (s2 +p2/C2

s) =0 . 

(16) 

(17) 

The nature of the roots depends on the values of the elastic 
constants c,y as well as on the wave speed Cs and the variables 
s and p. In many situations the roots 7, and 72 are real and 
positive and the expressions for the displacements in the 
Laplace plane become: 

1 00 

{Aie-w +A2e->2>')sm(sx) ds, 
0 

i
00 cosf-sx) 

(alAle-"}' + a2A2e-'2y) K—^-ds, 
0 s 

and the corresponding expression for r*y is given as 

o K a 1 + 7 1 M i e - T " + ( « 2 

+ 7 2 M 2 e - W i s i n g ) ds, 

Applying condition (11) to equation (19) renders 

(18a) 

(186) 

(19) 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/631 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A2(s,p) = -pAiis.p) 

o 7 i + 7 i (20) 

« 2 + 7 2 

It follows that the expressions for the transformed com
ponents of displacement assume the form 

S oo 

o 

-f3e—<2y)A1(s,p)sm(sx) ds, 

!

Oo 

-i\y 

-Pa2e-y2y)Al('S'P) cos(sx) ds, 

and the associated stresses are 

(
oo 

o [(.cus
1-a1ylcn)e-^)'-(c 

Ai(s,p) 
-a2y2ci2)e

 y2>h cos(sx) ds, 

o* = ^i2]0l(.Ci2S2-aly1c22)e tty-(c12s
2 

A (s p) 
-a2y2c22)e~-nn' cos(sx) ds, 

s 

S oo 

0 ( a i + 7 i ) ( e 
-y\y 

-e-r2y)A1(s,p)sm(sx) ds, 

Introducing the abbreviations 

D(s,p) = -(ui-&a2)Ax(s,p) 
s 

F(s,p) = 
1 

{on-0a2M 

-a2y2c22)], 

1 

[c 1 25 2 -a 17 1c 2 2 - /3(c 1 25 2 

I(C22+C12 

(21a) 

(216) 

(22a) 

(226) 

(22c) 

(23a) 

(236) 

cu(.l+cn)(_Nl+N2) 

-cnc22){cl2NlN2-cu) 

-c22 [ci2N]N\ -c,, (N2 + TV,N2 + N\)]}, (23c) 

^ i 2 = z— [cuc22-c\2-2cn±[(cuc22-c
2
2 2c22 

-2c 1 2 ) 2 -4c 1 1 c 2 2 ] , / 2 ! , (23d) 

and in view of boundary conditions (12), equations (216) and 

(226) yield the following pair of dual integral equations for 
the determination of the function D(s,p) 

sF(s,p) D(s,p) cos(sx) ds= 
0 MI2£P 

0 < j c < a , (24a) 

D(s,p) cos(sx) ds = 0, x>a, (246) 

In equations (236) and (24), the constant £ has been chosen 
such that for large values of the argument s, the expansion of 
the function F(s,p) is given as 

F(s,p) = l+0(l/s) 

Equations (24) form a pair of dual integral equations with a 
known weight function and its solution can be effected by 
writing 

(25) D(s,p)=}o<l>(t,p) J0(st) dt, 

where J0 is the zero-order Bessel function of the first kind and 
the auxiliary function, <j>{t,p), is governed by the Fredholm 
equation [10] 

4>(t,p) + \"4>(6,p)K(e,t;p) dd 
J o 

It a0(x)dx V °a(x) 

Jo (t2-x 2y/2 • 
(26) 

TTHUP^O ( 

in which the kernel, K(d,t;p), is given by 

K(6,t) = t \ °°s[F(sj)) -1]Jo (st) Ms6) ds, (27) 
Jo 

When the medium is stretched by a suddenly applied constant 
stress, i.e., a0 (x) = cr0> equation (26) reduces to 

Ht J>)+[ 
Jo 

%p)K(6,t;p)d6= -
a0t 

(28) 

To the extent that the function tj>(t,p) has been obtained, the 
problem of determining the displacements and stresses in the 
transformed plane is reduced to quadrature. In particular, for 
purposes of computing the stress-intensity factor at the crack 
tip, expression (25) is integrated by parts and the result is 
inserted in conjunction with equation (23a) into relation (226) 
to render 

<7* = £/-M2j<Mtf) F(s,p)cos(sx) J,(as) ds 

- [ F(s,p)cos(sx) ds[ tJi(st)~rlt'
l(j>{t)]dt\, (29) 

Jo Jo dt J 

Near the crack tip, the singular part of the expression in 
equation (29) can be extracted by noting that the integrals are 

Table 1 Engineering elastic constants 

Material E2 A*12 "12 

Boron-epoxy 
Type/ 

32.5 X 10° psi 1.84x10° psi 0.642x10° psi 
224.06 Xl0 9 N/m 2 12.69 x 109N/m2 4 .43x l0 9 N/m 2 

Boron-epoxy 
Type / / 

0.256 

8x10" psi 24.75X10° psi 0.7x10° psi 
55.16xl0 9N/m 2 170.65 x 109N/m2 4 .83x l0 9 N/m 2 

Glass-fiber 
(50 percent) 

0.036 

5.55x10° psi 
38.27 x l 0 9 N / m 2 

1.33 x l 0 ° psi 
9 .17xl0 9 N/m 2 

0.54x10° psi 
3 .72xl0 9 N/m 2 

Graphite-fiber 
(50 percent) 

0.28 

25.2x10° psi 1.0x10° psi 
173.75 Xl0 y N/m z 6.89 x lO^N/ir/ 

0.55X10° psi 
3 .79xl0 9 N/m 2 

Steel-mylar 26.28 X10° psi 4.1x10° psi 

0.28 

181.21 xlO^N/m^ 2 8 . 3 x 1 0 ^ / 1 ^ 
0.9x10° psi 
6 .2x l0 9 N/m 2 

0.44 

Beryllium 42.52X10° psi 
293.19xl09N/m2 

49.29x10° psi 16.3x10° psi 
112.4xl0 9N/m 2 

0.24 
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finite throughout their range except the first integral, which 
become singular at the upper limit. In view of these ob
servations and because of the behavior of F(s,p) for large s 
noted earlier, equation (29) may be expanded for r = x~a, 
r< <a, to yield 

with the stress-intensity factor in the p-plane given by the 
relation 

*1 = - f /* , 2 ( 7 y T 5 ! (31) 

With a view toward obtaining a numerical solution to 
equation (28), it is found convenient to adopt the following 
nondimensional parameters in equations (27)-(31) 

t = ar, 6=ap, \ = as 

Moreover, upon setting 

o0arv'$(r) 
4>(t)=<Har) = --

Va%P 

(32) 

(32) 

(33) 

it is readily shown that equation (28) simplifies to 

*(/-,/?) + j o $(p,p)L(ap, ar) dp = r'A, 

where the kernel, L(ap, ar), is now given by the symmetrical 
form 

Hap, ar) = (rp)'A ^\[F(\/a,p) - l]J0(\r)J0(\p) d\, (34) 

The factor kt is determined as 

k*{p)=o0(a) 
y2 *(1.P) 

(35) 

The next step in the analysis is to determine the time 
dependence of the solution. For this purpose, expression (35) 
is inverted to yield the dynamic stress-intensity factor 

k\ (0 = —-—— e<" dp, 
2lT l J Br p 

(36) 

Equation (33) is solved numerically for several orthotropic 
materials (listed in Table 1) and the values of *(l,p) are in
serted in equation (36). The Laplace inversion in the time 
domain is then carried out numerically by the method 
described in reference [7] to obtain the stress-intensity factor. 

In-Plane Shear Loading 

In this case the crack surfaces are deformed by sudden 
application of in-plane shearing stresses such that the sym
metry and boundary conditions read as 

<xy(x,0,t) = 0, all x, 

Txy(x,0,t) = -T 0 (x ) H{t), Q<x<a, (38a) 

u(x,0,t) = 0, x>a, (386) 

The same regularity requirements and initial conditions as in 
the preceding case are used. It follows that in the Laplace 
transform plane, equations (37) and (38) become 

a*(x,0;p) = 0, all x, (39) 

T*y(x,0;p) = - I s i f l , o < x < a , (40a) 

u*(x,0;p) = 0, x>a, (406) 

To utilize the results of the preceding section, the following 
relations are assumed for the displacement components in the 
transformed plane 

i oo 

A(s,y;p) cos(5x) ds, (41a) 

B(s,y;p) sin(sx) ds, (416) 

As a consequence, it is found that equations (7) and (8) are 
satisfied and the functions A and B are governed by equations 
(14)-(17). It follows that the expressions for the displacement 
components become: 

(Ale-yiy+A2e~i2y) Cos(sx) ds, (42a) 

i oo 

( a ^ e - T ^ + a1A1e-^y) sm(sx), (426) 

where a,-, y = 1,2, are defined in equation (16). The stress 
component a* is readily expressed by the relation 

{
Oo 

0 Kc12s
2-c22a,y1)A1e-n} 

sin (sx) 
+ (cl2s

2-c22a2y2)A2e-y2>] -^~1 ds, (43) 
s 

Now, boundary conditions (39) immediately give rise to 

A2 (s,p) =-PAi (s,p), (44a) 

with 

cl2s
2-c22a2y2 

(446) 

Making use of equations (42) and (44) in conjunction with the 
stress displacement relations, the stresses in the Laplace plane 
are found as 

o*x = -Mi2 j 0 [{CnS2-Ci2aa\)e~ny-{cus
1 

-ci2a2y2)e W ] 
Ai(s,p) 

sin(sx) ds, (45a) 

"* = — Mi2JQ (Ci2*2-c22ai7i)(e^ 71> 

A,(s,p) 
-e'W) ,y' sin(sx) ds, (456) 

rty = nl2\0l-(<xi+yi)e-"y + P(<X2 

+ y2)e->2}']Al(s,p)cos(.sx) ds, (45c) 

The following abbreviations are found to be convenient 

E(s,p) = Q-flAtisj)), (46a) 

- («i + 7 , ) + /3(a2+72) 
(37) G(s,p) 

5(1-/3)7, 

1 

(466) 

V = ( l+ciz) 1 k i i ( c 1 1 -M)-c 2 2(Ci i 

^ " ' [ j y (cn+Ci2^)-(cf2+c12 

- c ^ + C n i V f ) - — (cn+cnNj)(.c2
2+ci2 

-cnc22 +c22 Nl)], (46c) 

where the constants N, and N2 are defined in equations (23e0. 
Applying boundary conditions (40) to equations (42) and (45) 
yields the following pair of dual integral equations for the 
finding of E(s,p) 
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s G(s,p) E(s,p) cos(sx) ds = 
JO 7)Pfll2 

E(s,p) cos(5x) ds = 0,x>a, 

0<x<a, (47a) 

(476) 

In equations (46), the constant rj has been chosen so that for 
large values of the argument (s) the function G(s,p) defined in 
equation (466) approaches unity. The set of equations (47) 
and the present formulation is seen to be identical to that of 
the previous case. Hence for the case of constant shearing 
stresses (T0) applied suddenly to the crack surfaces, the stress 
T*y may be expanded near the crack tip 

T - = ( 2 ^ + ' ( 4 8 ) 

in which the mode / / stress-intensity factor is given by 

kUP)=T0(a)1 nhp) (49) 

and the auxiliary function, ¥(1,/?), is governed by the integral 
equation 

V(r,p) + \ V(p,p)M(ap, ar) d=ry>, 
Jo 

(50) 

with 

M(ap,ar) = (rp)'A ^\[G(\/a,p) 

-l]J0(r\)J0(\p)d\, (51) 

In the real domain, k2 (t) is obtained through the integral 

T0(a),A 2iri)Br p ap' ^ 

Numerical values of kx (t) and k2 (t) for several orthotropic 
materials are presented in the next section. 

Numerical Results and Discussion 

Beryllium and several composite materials were selected for 

Table 2 Stress-intensity factor kx(t)/o0{a)A 

impact loading 
for normal Table 3 Stress-intensity factor k1(t)/T0(a)'/l for in-plane 

shear loading 

kx(t)/aa(a Vi kx(t)/aQ(a) 'A 

Boron- Boron- Glass- Graphite 
epoxy epoxy fiber -fiber Steel-

Cst/a type/ type/ / (50percent) (50percent) mylar Beryllium 

Boron-
epoxy 

Cst/a type/ 

Boron-
epoxy 
type II 

Glass-
fiber 

(50 percent) 

Graphite 
-fiber 

(50 percent) 
Steel-
mylar Beryllium 

0.1 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

0.2815 
0.6581 
0.9494 
1.1056 
1.1751 
1.1913 
1.1765 
1.1457 
1.1085 
1.0707 
1.0359 
1.0059 
0.9813 
0.9624 
0.9488 
0.9399 
0.9351 

0.2921 
0.6653 
0.9534 
1.1071 
1.1749 
1.1898 
1.1742 
1.1429 
1.1054 
1.0676 
1.0328 
1.0029 
0.9786 
0.9599 
0.9466 
0.9880 
0.9336 

0.2476 
0.6315 
0.9315 
1.0955 
1.1717 
1.1933 
1.1829 
1.1553 
1.1202 
1.0838 
1.0496 
1.0196 
0.9946 
0.9749 
0.9603 
0.9501 
0.9440 

0.2727 
0.6518 
0.9457 
1.1039 
1.1749 
1.1922 
1.1784 
1.1482 
1.1113 
1.0737 
1.0389 
1.0087 
0.9840 
0.9649 
0.9510 
0.9418 
0.9368 

0.2797 
0.6571 
0.9491 
1.1056 
1.1754 
1.1916 
1.1769 
1.1461 
1.1089 
1.0710 
1.0362 
1.0061 
0.9815 
0.9625 
0.9489 
0.9310 
0.9352 

0.2178 
0.5989 
0.9020 
1.0728 
1.1575 
1.1876 
1.1849 
1.1639 
1.1341 
1.1016 
1.0700 
1.0415 
1.0171 
0.9971 
0.9814 
0.9698 
0.9617 

0.1 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 

0.9209 
0.9674 
1.0017 
1.0182 
1.0238 
1.0229 
1.0186 
1.0128 
1.0067 
1.0010 
0.9962 
0.9923 
0.9895 
0.9876 
0.9866 
0.9864 
0.9867 

0.8127 
0.9315 
1.0170 
1.0562 
1.0670 
1.0614 
1.0474 
1.0300 
1.0124 
0.9965 
0.9831 
0.9726 
0.9651 
0.9603 
0.9580 
0.9577 
0.9593 

0.7396 
0.8934 
1.0066 
1.0613 
1.0798 
1.0770 
1.0627 
1.0435 
1.0233 
1.0045 
0.9884 
0.9755 
0.9659 
0.9595 
0.9560 
0.9549 
0.9559 

0.9057 
0.9601 
1.0003 
1.0201 
1.0271 
1.0265 
1.0219 
1.0155 
1.0086 
1.0022 
0.9967 
0.9923 
0.9890 
0.9868 
0.9855 
0.9851 
0.9854 

0.8913 
0.9572 
1.0052 
1.0279 
1.0349 
1.0329 
1.0261 
1.0173 
1.0082 
0.9989 
0.9928 
0.9872 
0.9832 
0.9806 
0.9792 
0.9790 
0.9796 

0.4356 
0.7460 
0.9810 
1.1019 
1.1507 
1.1560 
1.1369 
1.1059 
1.0710 
1.0371 
1.0068 
0.9816 
0.9618 
0.9474 
0.9379 
0.9328 
0.9314 

1.25 

C.t 

Fig. 1 Dynamic stress-intensity factor versus time for normal impact 
loading (boron-epoxy composite, type /) 
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1.25 

C . t 

Fig. 2 Dynamic stress-intensity factor versus time for normal impact 
loading (boron-epoxy composite, type //) 

Boron-Epoxy Composite 
(Type I ) 

Boron-Epoxy Composite 
(Type I I ) 

C.t 

Fig. 3 Dynamic stress-intensity factor versus time for in-plane shear 
loading 

numerical computation and application of the solution 
presented. The elastic constants are listed in Table 1. Except 
for the beryllium, which is nearly isotropic, all other materials 
are distinctly orthotropic. For the materials considered, the 
roots of the quadratic equation (17), are real and positive and 
the preceding formulation applies directly. However, in case 
the roots are negative or complex conjugates, as undoubtedly 
will occur for some other materials, the formulation must be 
modified to insure real displacements and stresses that vanish 
at the remote distances from the crack region. 

The Fredholm equations (33) and (50) were solved 
numerically by the method described in [6] to yield the values 
of the functions *(l,p) and ¥(l,p) at several discrete points. 
These values were then inserted into equations (36) and (52) to 
determine the corresponding stress-intensity factors. This was 

accomplished numerically by the method of [7] using a five-
term series expansion in Legendre polynomials orthogonal in 
the interval (-1,1). In all cases examined the numerical 
computation converged smoothly and no unusual difficulties 
were encountered. Tables 2 and 3 show the values of the 
normalized dynamic stress-intensity factors, ky(t)/o0(a)¥' 
and k2(t)/T0(a)'/2 for few initial values of the normalized 
time variable Cst/a. The results for the boron-epoxy com
posites are also displayed graphically in Figs. 1-3. A close 
examination of the results reveal that, for each material, the 
dynamic stress-intensity factor rises very quickly with time, 
reaching a peak and then decreases in magnitude and tends to 
the static solution for sufficiently long time. This behavior 
can be attributed to the scattered Rayleigh wave at the crack 
tip. 
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For the boron-epoxy composite (type T) with the following 
material characteristics [11] 

El/E2 = 17.65, /x12/£'2=0.35, vn =0.256 

Shear modulus p,n = 4.43 x 109 Pa 

Density p = 0.244 x 10~2 Kg/cm3 

Cs= (Mi2/p)'/2 =0.135 cm//xsec 

the overshoot in the value of kt (t) is about 19 percent and 
occurs at a time of Cst/a = 2.5. Thus, for a crack of half 
length a = 2.54 cm (1 in.), the elapsed time needed for kt {t) 
to reach its maximum amplitude is estimated to be ap
proximately 4.75 x 10""5 of a second. The elapsed time 
should satisfy the condition Cst>>5, where 5 is a small 
quantity (<5< <a) so that the asymptotic solution will be valid 
near the crack tip. On the other hand, in the boron-epoxy 
composite of type II [12], even though the material charac
teristics are different (E{/E2 = 0.32, ixn/E2 = 0.028, 
vi2 =0.036), the variation of ky (t) with time is similar to the 
previous case (see Figs. 1 and 2). Similar conclusions can be 
made concerning the remaining materials. For purposes of 
comparison with the isotropic medium, reference [2] reports 
an overshoot of about 23 percent attained after a time of 2.4 
x 10~5 of a second in a material made of steel with Poisson's 
ratio e = 0.29. While, in refernece [13], where elastodynamic 
stress-intensity factors were computed for diffraction of a 
longitudinal wave by a crack of finite length in an isotropic 
solid, the peak value of k{ (t) was found to be 30 percent 
greater than the analogous static factor. Moreover, it was 
noted that this result is valid from the instant the incident 
wave arrives at the crack tip until a diffracted longitudinal 
wave reaches the opposite crack tip, is rediffracted, and then 
reaches the original tip; and, most likely, there are no higher 
maximum values in kx (t) for longer times. Greater peaks in 
the values of kx (t) were given in [4,5] where finite element 
and finite difference methods were employed to evaluate the 
dynamic stress-intensity factors for a crack in an isotropic 
sheet of finite width subjected to incident step-stress waves. 

The mode / / stress-intensity factors are given in Table 3. 
For beryllium, the rise in the stress-intensity factor is about 16 
percent and occurs at an elapsed time of Cst/a = 2.5. This 
result is in excellent agreement with the analogous results 
given for the isotropic material [2, 13]. For the remaining 

materials considered, the peak in k2 (t) is very small (it varies 
between 3-8 percent) and occurs at smaller time Cst/a than 
the corresponding time for the normal loading. More 
specifically, in the boron-epoxy composite designated by type 
I, the value of k2(t) is about 2.5 percent greater than the 
static factor and occurs at an elapsed time of 3.77 x 10"5 of a 
second. While in the type 7/ boron-epoxy composite with Ex 

< E2, the peak in k2 (t) is about 7 percent and occurs at Cst/a 
= 2. Thus, it seems that there is a higher rise in the value of 
k2(t) when the material possesses stronger modulus in the 
direction normal to the crack plane. The variation of k2 (t) 
with time is exhibited in Fig. (3) for both boron-epoxy 
composites. Generally speaking, the dynamic overshoot in 
orthotropic materials is smaller for the shearing mode and 
occurs at shorter time than the case for the normal loading. 
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Longitudinal Collision of Rod-Rigid 
Element Systems 
One-dimensional wave propagation theory is used to investigate the forces, 
velocities, and displacements in a series of elastic rods connected to rigid elements. 
The method is applied to the case of two subsystems that collide. The technique 
allows the calculations to be done during a short-lived event such as a collision. 

1 Introduction 

In many mechanical systems collision-like processes occur 
between elements coming into contact. A detailed description 
of these processes and their effects is virtually impossible. It is 
possible however, to obtain a good understanding of the 
physical phenomena through the investigation of simplified 
physical models which can be described by known 
mathematical apparatus. 

In this paper a method of investigation is proposed for 
those mechanical systems that can be modeled by series of 
rods and rigid elements. The method, based on the theory of 
propagation of one-dimensional waves [1], is developed and 
discussed for simultaneous longitudinal collisions of three 
known initial velocities vx, v2, and v3. It is assumed that the 
colliding rods have flat ends perpendicular to the direction of 
motion and their cross sections undergo only longitudinal 
displacemnts, i.e., radial effects are neglected. For modeling 
purposes, curved surfaces of colliding elements may be 
replaced by flat surfaces and even at the small distance from 
the point of contact, calculated values differ only negligibly 
from those obtained for curved surfaces [2]. Additionally, 
since the time of collision is very small, damping in the system 
under consideration is neglected [3]. 

While the model itself is extremely interesting, its practical 
applications range from investigation of colliding machine 
elements through mining and forging machinery to colliding 
railway cars and river barges. While the theory is presented 
for three subsystems - and can be easily extended to more -
calculations are presented for a system consisting of two 
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subsystems moving with velocities tJ] and v2, respectively. 
Numerical results for velocities and deformations at various 
points of the system are presented in graphical form. 

2 Basic Equations and Development of the Numerical 
Technique 

While the development of the governing equations can be 
done for n subsystems of multistage rods, it will be considered 
in the following for only three separate ones. Each of the 
subsystems (see Fig. 1) is modeled as being composed of rigid 
elements with masses A/,- to which elastic rods of length / are 
attached to both sides. Each of the rods have length /, mass 
density p, elastic modulus E, and cross-sectional area A. The 
three subsystems have a\, a2, and a3 rods, respectively. Since 
each mass has rods on both sides alt ct2, and a3 must be even 
numbers and the subsystems contain tv.,/2, a2/2, and a 3 /2 
masses, respectively. Each of the masses is numbered with an 
odd number so that subsystems 1 contains masses A/,, 
Af, M„ 

1-1,. 
etc. The rods are numbered consecutively so 

that subsystem 1 contains rods from 1 to a, , subsystems 2 has 
rods «! + 1 to «! + ct2, and subsystem 3 has rods c^ + a2 + 
1 to at + a2 + a3 . 

Before collision each of the subsystems is in rectilinear 
motion with speeds V\, v2, and jJ3 respectively. At time t = 0 
the subsystems undergo simultaneous longitudinal collision at 
the points of contact between rods ct\ and txj + 1 as well as 
between c^ + a2 and at + a2 + I. 

The governing equations are written in terms of the position 
coordinate x, time T, the displacement u,(x,i) of a cross 
section of the rth rod, and c the speed of a longitudinal wave 
in the rods. For ease of calculation nondimensional variables 
are introduced. These include 

x CT 
X = l t = l 

cu, 

7̂ 
/=1,2 , 

-+- 0"= 1,2,3) 

ax + a2 + a3 (2.1) 
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The governing differential equations are then the wave 
equation for each individual rod. In terms of the non-
dimensional variables these become 

d2Ui(x,t) d2u,(x,t) 

dt2 = 0 
dx2 

( = 1,2, . . . a! + a2 + 0:3 

The boundary conditions include zero force at the ends 

du, 
~±=0 x = 0 
ax 

——=0 x=n n = al+<x2 + ct3 
ox 

The forces between rods must equal 

^ = % i x = / = 2 , 4 , . . . „ - 2 
dx dx 

The displacements must be continuous therefore 

(2.2) 

(2.3) 

(2.4) 

(2.5) , + i x = ('=l,2, . . , n-\ 

As well there must be a force balance for each of the masses so 
that 

1 d2u, ( du, dui+, , 
Z V + U T - ^ T ^ 0 *=<=1.3....«-1 (2-6) 

and 

J = 0 #=( '=1,3, . . , n — 1 

Apt 
K,= 

M, 

In addition the initial conditions are as follows: 

n Uj(x,0) = 0 (=1,2. 

du. 

( = 0 
(2.7) 

where 

j = 1 

j = 2 

j = 3 

= 1,2, . . . , a, 

= <*! + 1, . . . , « ! + a2 

= of! + a2 + 1, . . . , a, + a2 + a3 

As the governing differential equations (2.2) and the 
boundary conditions are linear a solution of the following 
form is assumed 

«,•(*.') = / ( ( ' - tm -x + xi0) + gj(t- tio +x-xi0) 

+ F,(t-TK) -x + X^ + GM-Tn+x-X^ + Vit (2.8) 

where 

t = / «i - ' ' =1 .2 , . . , «i 
\ ( — a, - 1 / = « ! + 1 , . . . , « ] + a 2 + a3 

(=1,2, . . . , a, 
1 / = <*!+ 1, . - . . , of] + a 2 + a 3 ( 

_ / a i + a 2 - / (=1,2, . . . , a{ + a2 
10 \ i - ai - a2 - 1 (' = c^ + a2 + 1 a i + a2 + a3 

X =( ' ' = 1,2> • • • , ai + a 2 

' V ('— 1 ('= a] + a2 + 1, . . . , a, + a 2 + a3 

The assumed solution (2.8) consists of two sets of waves/,, 
g, and Fh G, as well as a displacement due to the initial 
velocity of the subsystem. The terms / , g,- represent waves 
formed in the ith rod as a result of the collision between 
subsystem 1 and 2 while Fh G, represent waves from the 
collision between subsystem 2 and 3. The terms / and Ft 

represent waves traveling in the positive direction while g ; and 
G, travel in the negative direction. 

The constants in equations (2.8) are chosen to denote in
stants in time t and end of rods such that the disturbance 
caused by the appropriate collision will have reached the 
particular location. It is also assumed that for negative 
arguments (i.e., before arrival of the first perturbation) the 
funct ions / , g,, Fh and G, are identically zero, and all of 
them are of class C°. The form the these functions is deter
mined by boundary conditions of the considered problem. By 
substituting the assumed form (2.8) into the boundary con
ditions (2.3)-(2.6) we get system of equations for these 
functions. For example, equation (2.3) gives: 

-f1'(t-a1+2) + g,'(t-al)-Fi'(t-cxi-a2+2) 

+ Gl'(t-al -a2) = 0 

-fn'U-a2-a3)+g„'(t-a2-oc3+2) 

- F „ ' ( f - a 3 ) + G„'(f-o!3+2) = 0, 

equations (2.4), for / = 2,4, . . . , a, , give: 

- / ' ( r - a , +i) + g,'(t-a1 +i)-F,!(t-al-a2 + i) 

+ Gi'(.t-al-a2+i)=-f!+l(t-a1+i + 2) 

+ g!+i(t-ai + 0 

-F;+1(t-ai - a 2 + ( + 2) + G / + , a - a : 1 -a2 + i) 

( = 2,4, . . . , a, - 2 

- / « 1 ( 0 + ^ 1 ( 0 - ^ , a - a 2 ) + G ; i ( r - a 2 ) 

= - / ; i + i ( 0 + g ; i + i ( 0 - ^ 1 + 1 ( / - a , + 2 ) + G ; i + 1 ( / - a 2 ) 

0 '=«i) , 
while equations (2.6). for / = 1,3, . . . , at - 1, are rewritten 
as 

/ } " ( / - « , + 0 + g r ( > - a i + 0 + - F / ' ( f - a i - c K 2 + 0 

+ G,"(?-a , - a 2 + /) + 

+ Ki[-f!(t-al+i) + gl(t-ai+i)-F!(t-al-a2 + i) 

+ G!(t-<x1-a2 + i)+fl+l(t-al+i + 2)-g;+i(t-al+i) 

+ F;+l(t-al-a2+i + 2)-G;+l(t-as-a2 + i)] = 0 

('= 1,3, . . . , « ! - 1 . 

All other equations are derived in a similar manner. Since in 
all these relations (2.3), (2.4), and (2.6), derivatives of ap
propriate functions appear rather than then functions 
themselves it is convenient to differentiate equations (2.5) 
with respect to time as well. 
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In all those equations for the functions/,, gh Fjt and G, 
there exist simple relationships between arguments of the 
functions appearing in the same equation; however, these 
relationships may vary from equation to equation. 

Since the discussed problem is of linear type one can in
vestigate functions / , and gh and Ft and G, separately. It 
means physically that the effect of each collision can be 
treated separately. For the final result, however, one has to 
superpose both collision effects. It is expressed 
mathematically by the relation (2.8) for displacements. 

Upon denoting the largest argument in each equality by z 
(separately for / and gh and for Ft and G,) we have 
arguments of the remaining functions shifted by 2 or 0. This 
leads to the following final system of equations for the 
unknown functions/;(z) and g,(z). 

fi(z) = g[{z-2) 

f'Az) = / / - i ( z - 2 ) , ( = 3,5, . . . , a, - 1 

//(*) = fl-l(.z-2) + g;_l(z-2)-g!(z-2) 

i = 2,4 , a, 

g'iiz) = f!(z-2); ; = a , + a 2 + a3 (2.9) 

S'Xz) = g/+i(z-2), 

i = at +2,01! +4, . . . , aj + a 2 + a3 — 2 

g!(z) = fUi(z-2)+g'i+l{z-2)-f[{z-2) 

('=«! + 1 , 

a.\ + 3, . . . , «] + a2 + a3 — 1 

1 
g'ai(z) = ga,+i(z)+ — (v2-vl) 

1 
fai+dz) = f'ai(z)- —(v1-vl) 

gKz) = g!+dz) ( = a, - 2 , ai - 4 , . . . , 2 

g/'(z) + 2Kigl(z)=-f!'(z) + 2KigU,(z) 

i=ctx - 1 , . . . , 3,1 

f','(z) + 2Ki^f[(z)=-g!'(z) + 2Ki+J^dz) 

i = «! + 2, «] + 4, . . . , « [ + a2 + a3 

y/fe) = //-lfe). / = a,+3, 
a! + 5, . . . , a, + a2 + a3 — 1 

and to the following final system of equations for the 
unknown functions F,-(z) and G,(z) 

F[{z) = GHz-2) 

F'j{z) = F /_ , (z -2) ;' = 3,5 . . . , a , + a 2 - l 

F!(z) = 77- i («-2) + G / _ 1 ( z - 2 ) - G / ( z - 2 ) 

;' = 2,4, . . . , a, + a2 

G!(z) = G/+ 1 (z-2) i = a 1 + a 2 + 2 , 

aj + a2 +4, . . . , a{ + a2 + a3 — 2 

G/(«) = F / + 1 ( z -2 ) + G/ + 1 (z -2 ) - J F/ (z -2 ) 

(' = «! + a 2 + 1, 

at +a2+3, . . . , a + a2 + a3 — 1 

G/(z) = F / ( z - 2 ) , / = a , + a 2 + «3 (2.10) 

F&z) = F'i+1 (z) - — (v3 - v2) for / = a, + a2 

F/(z) = G'+l(z)+ — {v3-v2), i=ai+a2 

F'j(z) = F/_,(z),/' = « ! + a 2 + 3 , 

«i + a2 + 5, . . . , «! + a2 + a3 — 1 

F/'(z) + 2^ ;_1 JF,'(z)=-G/'(z) + 2^ ;_,F/_1(z) 

/ = ai + a 2 +2 , a?i + a 2 +4 at + a2 + a3 

G/(z) = G/+1(z), ( = 2,4, . . . , a, + a 2 - 2 

G/'(z) + 2K,G',{z)= -Fi'(z) + 2K,GUx(z) 
/=1 ,3 , . a, + a , — 1 

These two systems of equations (2.9) and (2.10) are systems of 
linear, ordinary differential equations of first and second 
order. These sets are solved in the given sequence in the 
successive intervals of argument z, beginning with even 
numbers. Since the functions/ , g, and Fit G, are equal zero 
for negative arguments, therefore when solving equations 
(2.9) and (2.10) in the given sequence the right-hand sides of 
these equations are always known. 

3 Example 

As an example consider two subsystems, one with two 
masses and four rods while the other has one mass of two 

dx 

Fig. 2 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/639 

Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.0 

at 0.5 -

_L_ 

x = 4 

x=2 .5 
x=1.0(U 

J _ _L 
16 20 24 28 32 36 40 

t 
Fig. 3 

rods. Consequently a, = 4, a2 = 2, and a3 = 0, as shown in 
Fig. 1, and from the system of equations (2.9) we get: 

fi(z) = g'iiz-2) 

fi(z) = Mz-2) 

f!(z) = fi-iH-7)+gi-dz-2)-gfc-2) ' = 2,4 

g(,(z) = fe(z-2) 

gs(z) = Mz-2) + gte-2)-m-2) 

g'^z) 

Mz) 

gs(z)+ y fe; 

= fi(.z)- -j (P2-

• . « i ) 

v\) 

••• gi'(z) + 2K3g«z)=-A'(.z) + 2K3gi(z) 

giiz) = g)(z) 

g{'(z) + 2Klg;(z)=-fi'iz) + 2Klgi(z) 

Mz) + 2K5fi(z)=-gi'(z) + 2K5nU) 
This set of equations is to be solved in the given sequence in 

the successive intervals of the argument z > 0, beginning with 
even numbers, since arguments of functions in right-hand 
sides of some equations are shifted by 2. Equations (3.1) 
together with (2.8) can be used to calculate velocities, strains, 
and displacements for any cross section x of any rod at any 
instant t during collision. 

The set of equations (3.1) was solved using method of finite 
differences with Az = 0.025 and for the parameters of the 
system: 

Ki=K2=Ki=0.0l, 

^,•=1.0 and K2=0.5 (3.2) 

Numerical results for strains in the cross sections x = 
1.0(i), x = 2.5, and* = 4 are shown in Fig. 2. It can be seen 
that the strain for cross section x = 4 (the point of collision) 
changes in a jumplike manner, with jump occurring every At 

= 2. At t = 36 this strain reaches zero and at this point we 
have to terminate our calculations. This instant physically 
represents the end of contact between the two subsystems and 
the beginning of separate motions. Further it follows from 
Fig. 2 that the strains at x = 1.0(L) and x = 2.5 are continuous 
with the first one being much smaller than the second. 

Numerical results for velocities in the cross sections x = 
1.0, x = 2.5, and x = 4.0 are shown in Fig. 3. It can be seen 
that the velocity for the cross section x = 4 undergoes a 
jumplike change at t = 0, in order that the two subsystems 
could move together with the same velocity. This common 
velocity is changing continuously during the duration of 
collision. 

If for some practical application we have, for example, / = 
0.5 m and c = 5000 m/s, then nondimensional unit of time t 
= 1 corresponds to 10 ~4 sec. Then the total duration of 
collision is approximately 3.6 x 10~3 sec and all jumplike 
changes of strain for x = 4.0 occur at intervals of time At = 2 
x 10"4 sec. 

4 Concluding Remarks 

In the paper a simple method is proposed for investigation 
of colliding systems that consist of series of elastic rods 
connected with rigid elements. Dimensions of elastic and rigid 
parts should be such that the theory of one-dimensional waves 
is applicable. Effectiveness of the method is illustrated in the 
case of two, and three colliding subsystems. Displacements, 
velocities, and stresses can then be easily calculated for any 
cross section in any subsystem at any interval of time during a 
shortlived event such as a collision. 
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An Approach to the First Passage 
Problem in Random Vibration 
The first passage problem for the response of a linear oscillator excited by a random 
excitation is considered. An approximate analytical technique is presented for 
calculation of the distribution of the time to first excursion across a symmetric 
double barrier. The approach may be applied to the case of nonstationary response 
to modulated Gaussian noise with nonwhite spectral density. Results for the 
limiting decay rate parameter are presented and are compared with those of other 
analytical methods and simulation results. The first passage probability is 
calculated for a system subjected to a suddenly applied white noise and the results 
also compared with those of other methods and computer simulations. The results 
of the proposed method show generally good agreement with simulation results. 

Introduction 
The determination of the probability that the value of some 

response variable remains below a given threshold throughout 
a specified time interval is an important problem for many 
engineering applications. A system of particular interest in 
structural dynamics and vibration is the linear oscillator 
subject to a stationary Gaussian-white noise. The equation of 
motion may be written as 

x + 2fa0x + u0
2x=w(t) (1) 

where f is the fraction of critical damping, and co0 is the 
undamped natural frequency. The spectral density of w{t) 
will be assumed to be S0. 

Let W{T) be the probability that the magnitude of x 
remains less than some barrier level b throughout the interval 
[0,7], where b is a positive constant. Then, W{t) will in 
general be dependent on the initial conditions imposed on 
equation (1). However, it has been observed by Crandall and 
others that the effects of the initial conditions tend to die out 
as T becomes large compared with the natural period of the 
oscillator [1]. Specifically, it has been observed that W(T) 
eventually approaches a decaying exponential of the form 

W(T)~e~aT (2) 

independent of the initial conditions [2]. The parameter a is 
referred to as the limiting decay rate of the first crossing 
density. 

Although the first passage problem for the linear oscillator 
may be precisely formulated [1], no closed-form solution for 
this problem has yet been presented. In the absence of an 
exact analytical solution, numerous approximate solutions 
have been proposed. Of these, the most accurate schemes 
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generally involve the generation of an approximate solution 
for the conditional transition probability density governing 
first passage. An obvious approach of this sort would be to 
attempt a numerical solution of the Smoluchowsky integral 
equation [3] or its associated Fokker-Planck-Kolmogorov 
equation. An interesting variation of this approach is based 
on a discretized version of the Smoluchowsky equation. This 
so-called "diffusion of probability" method has been em
ployed by Crandall, et al. [2], to obtain approximate values 
for the limiting decay rate a for a number of damping values 
and a range of barrier levels. For a sufficiently fine 
discretization, this procedure generates values of a that agree 
quite well with those obtained by both analog and digital 
simulation as indicated in Fig. 1. 

The best approximation for a currently available appears to 
have been obtained by Mark [4]. For sufficiently small 
damping, the sample functions of x\t) have an approximately 
sinusoidal appearance. Hence, the magnitudes of the peaks of 
these quasi-sinusoidal sample functions may be treated as a 
one-dimensional, continuous-state, discrete time Markov 
process. Mark makes the approximation that the peaks are 
separated by intervals of exactly At = 7r/u0; an assumption 
that will become increasingly valid as the damping decreases. 
A conditional transition probability density function 
p(a0 la, ;Ai) for the magnitude of a peak a,, given the value 
of the preceding peak d0, is then derived. This leads to an 
integral equation, similar to the Smoluchowsky equation, 
which must be solved numerically. This method also agrees 
well with simulation results for small damping as indicated in 
Fig. 1. 

Most of the accurate approximate analytical solutions 
presently available still require substantial numerical com
putation. However, strictly numerical schemes, such as Monte 
Carlo simulation and diffusion of probability, require much 
greater computational effort. A number of simple ap
proximate solutions for the limiting decay rate also exist. 
These require much less effort to implement but do not exhibit 
acceptable accuracy. The simplest approximation involves the 
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A - Assumption of Independent D-Crossings. 
B - Assumption of Independent E-Crossings . 
C - Vanmarcke's Modified Two-State Markov Process . 
E - Mark's Continuous State-Discrete Time Markov Process . 
F - Digital Simulation. 
G - Analog Simulation. 
H - Numerical Diffusion of Probability. 

Fig. 1 Comparison of analytical estimates for limiting decay rate with 
results of simulations, f = 0.01. From reference [1]. 

assumption that the barrier crossings are statistically in
dependent events. This will be approximately true when the 
value of b is large compared with the root-mean-square value 
of the response a so that the average interval between suc
cessive up-crossings of b becomes very long. Making this 
assumption, the times at which such up-crossings occur 
constitutes a Poisson process, and the intervals between up-
crossings will be exponentially distributed. Solving for the 
average rate of up-crossing of the level x = b, denoted by vb 

gives [5] 

b2 

Vb = 
cop 

2TT 
exp (-£)• (3) 

The rate of down-crossings of — b will be the same as vb. 
Thus, the average of the number of crossings out of the safe 
region per unit time is just 2vb. This gives the Poisson process 
average rate as 

<x = 2vb. (4) 

For barrier levels of practical interest, the Poisson ap
proximation is usually overly conservative as indicated in Fig. 
1. For very high barrier levels, however, the approximation 
becomes quite good, and in fact, equation (4) becomes 
asymptotic to the actual limiting decay rate as b — °°. The 
Poisson average crossing rate 2vb provides a convenient 
normalizing factor for other estimates of the limiting decay 
rate as employed in Fig. 1. 

Corotis, Vanmarcke, and Cornell [6] have proposed a 
scheme to obtain more accurate approximations for a. The 
stationary envelope response a is treated as a two state, 
continuous time, Markov process in which state 0 corresponds 
to a < b. The intervals T0 and Ty spent in states 0 and 1, 
respectively, are assumed to be independent random variables 
with exponential distributions. Using physical arguments to 
estimate the fraction of envelope-crossings that are im
mediately followed by a barrier-crossing yields 

a = 2v6 

1 - e x p 

_ 1 — exp 

V 2vb) 
(5) 

where nb is the average frequency of envelope up-crossings. 
As indicated in Fig. 1, the results of this method ( Q are 
clearly more accurate than those of the Poisson process 
approximation (^4), and the correct qualitative behavior of a 
with variation in barrier level is predicted. Vanmarcke [7] has 
improved on this estimate by accounting for the pattern of 
clustering of barrier crossings. However, it appears possible 
to achieve a still further improvement with little additional 
computational effort as outlined in the following section. 

Formulation 

It is widely agreed that the basic reason the Poisson process 
approximation for a breaks down for low barrier levels is that 
the crossings out of the safe region are, in fact, not 
statistically independent events. Since the envelope varies 
slowly, when a peak occurs above the threshold level, the 
probability is higher than usual that the next peak will also be 
above the threshold. Thus, barrier crossings tend to occur 
together in clumps [8]. For decreasing damping ratio or 
barrier level, the tendency toward clumping will increase. 
Therefore, if allowance were made for the clumping tendency, 
one might expect a more accurate estimate for a to result. 

Let the clump size Nc be defined as the number of suc
cessive peaks that occur outside the safe region with no in
tervening peak inside this region. Since it is assumed that the 
response is quasi-harmonic, successive barrier crossings in a 
clump will be separated by an interval of approximately 
l /2e0 , where p0 is the natural period of the oscillator. Let Tx 

be the clump duration and T0 be the interval between the end 
of one clump and the beginning of the next clump. Then, 
assuming ergodicity, it may be shown that the expected 
number of up-crossings of the + b level per unit time may be 
expressed as 

2Vb=
 E[N<] • (6) 

Assuming that T0 is exponentially distributed leads to [9] 

Vb/vp 
E[TX] 0--) (7) 

Hence, the problem has been reduced to the determination of 
£ [ r , ] . 

Let the probability that Tx is greater than / be denoted by 
PT (t). To determine the detailed structure of this 
probability would be very difficult. However, it is possible to 
surmise the qualitative behavior of PT (t) from physical 
considerations. Consider the conditional probability P(n + 
1 In) that a clump, which already contains n crossings, will 
continue for at least one more crossing. Then, 

P{n + \\n) = n) =Pr\rl > 
n + \ 

2v0 
Tx> 

2v0-

M 2v, ) 

T\iiJ 
(8) 

It may be shown that P(n + 11 n) increases rapidly with «/or 
n small. However, as n becomes large, one would expect P{n 
+ 1 \ri) to lose its dependence on n. Thus P(n + 1 In) should 
approach a constant value as n —• °o. Let this limiting value be 
denoted by P*. Then, 

P* = Lim P(n + \\n)=Um 
M^kr) 

v" \£r) 
(9) 
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The precise form of the probability density function pT (t) 
associated with PT} (r) is now known. However, it is clear 
that a negative exponential relationship would provide the 
desired asymptotic behavior as « — <»(/ — oo). The depen
dence of P on n for n small may be accounted for by in
troducing a time-dependent coefficient for the exponential 
distribution. Based on numerical studies [9] it has been found 
that PT may be adequately approximated by 

PTl(t)=\,Pe-» (10) 

where C is a normalizing constant and 7 and /3 are parameters. 
For narrow-band stationary response, a value of 7 = 1 
provides the best agreement with simulation data. When the 
response process is broad band, 7 must be reduced to reflect 
the greater independence of barrier level crossings. The 
parameter /3 is determined by an examination of the stationary 
density of peaks occurring in a clump. 

Stationary Response 

Integrating equation (10) and substituting into equation (9) 
gives 

P* = exp 
V 2Vn / 

(11) 

where 7 has been set to one for the stationary response case. 

2 
E[T,] = (12) 

Substituting from equations (11) and (12) into equation (7) 
then yields 

«=-"ft[1_exp("2?)] ln{pt)- (13) 

P* will be estimated by considering the response of the system 
for one-half cycle of oscillation after a peak greater than b has 
occurred. 

Let q(x0\xl ; t)dxx be the probability that a solution 
trajectory of (1) which starts at x0 reaches the differential 
element of measure dx\ centered at xx a time t later. This 
quantity is readily expressable as a function of the spectral 
density of the excitation and the natural frequency and 
damping at the system [10]. Suppose that the oscillator is at a 
peak during a clump in which k barrier crossings have already 
occurred and \etpk(r) be the conditional probability density 
of such peaks, given that r > b. Due to the narrow-
bandedness of the response, it will be assumed that any two 
successive peaks will be separated by an interval of 7r/corf, and 
that x changes sign during this interval. With this assumption, 
pk+1 (r) may be expressed as 

Pk+i(r) =x4° pk(x)q(-x\r,iv/u>d)dx; r>b 
(14) 

= 0; r<b. 

The factor \k is determined from the condition that the 
integrated probability density must be equal to one. Hence, 

1 
j pk(x)q(-x\r,tr/oid)dxdr. (15) 

The quantity on the right of equation (15) will be recognized 
as the probability that the clump will continue for at least one 
more barrier crossing given that k crossings have already 
occurred. Hence, from equation (8) as k — OQ, 1/X^ — P*, 
a n d p t (r) approaches a stationary density/^ (/•). This gives 

{
00 [> 00 

A*- (x)q(-x\r;ir/<j}d)dx dr. (16) 

As formulated, l/P* is the eigenvalue of an integral 
equation for p„ (x). Since this integral equation does not 
appear to be amenable to an exact analytical solution, an 
approximate solution will be sought. This approximate 
solution will be generated by assuming the form of the 
eigenfunction p„ (x) and then calculating the resulting 
eigenvalue. This is recognized as the first step of a Picard 
iteration procedure. Successive iterations could be carried out 
to refine the estimate of the eigenvalue but this will not be 
undertaken in the present analysis. 

The probability density of the stationary response of the 
system will be a Gaussian distribution. Although p„ (x) will 
not be Gaussian distributed, it is reasonable to assume that it 
will have a similar shape especially for x substantially larger 
than b. Therefore, it is herein assumed that p„ (x) may be 
approximated by the clipped Gaussian distribution 

^2 / x2 \ 
pK(x)= exp(-~r); x>b 

<rfwerfc[ -— ) 
V\/2V 

2 a 2 / ' 

= 0 x<b. (17) 

Substituting from equations (17) into equation (16) and 
using the known expression for q( —x/r,-w/wd) yields 

b 

exp (-£) 
• erfc 

b — rc 

oVIirerfc 
VV2V 

LvitKl-c2)1 

where 

: = exp f - Tf"o \ 

<•></ 

\dr (18) 

(19) 

The integral of equation (18) may be approximated 
analytically by assuming a trilinear representation for the 
complementary error function that matches the function 
exactly as its two asymptotes and at the point where the 
argument is equal to zero. This gives 

1 [ ^ [ l - ^ ^ l [ e r f C v , ) - e r f ( , 2 ) ] P* = 

erfc ( - ) 

TTVI-

VTT(1-C 2 ) -

2 2 

(e~y2 -e-yi ) + erfcO,)J (20) 

where 

"-HvE + T**1^] 

In Figs. 2 and 3, the variations of <x/2vb with barrier level 
b/a is displayed for two values of damping, for comparison, 
simulation results and the corresponding values from the 
Poisson approximation and Vanmarcke's improved two-state 
Markov process approximation [7] are also presented. The 
latter method was chosen for comparison because it involves 
computational effort comparable to that of the present ap
proach. Although Mark's method [4] corresponds with 
simulation results more consistently than any of the ap
proximations shown in Fig. 1, it has not been used for 
comparison since it involves considerably more com
putational effort than the methods compared. 

It will be observed that the results of the present analysis 
are, for the most part, somewhat less conservative than the 
Vanmarcke estimate—especially for low damping and barrier 
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Fig. 2 Limiting decay rate versus barrier level, f = 0.01. Simulation 
results from reference [2]. 
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0.04. Simulation 

and 9(t) is a modulating function. The Fourier transform of 
the autocorrelation of the excitation will then be 92(t)SQ 

which may be thought of as a time-dependent intensity or 
"spectral density.'! 

In the analysis of the stationary response, it was assumed 
that the response was narrow-banded. This assumption will 
obviously be violated if the level of excitation changes rapidly 
relative to the response time constant l/(fto0) of the system. 
One of the critical places where the narrow-bandedness 
assumption enters into the analysis is in the specification of 
the parameter y in equation (10). When the level of excitation 
is such that it will sustain a stationary response variance as 

which is substantially greater than the actual response 
variance a, the response process will, in the short term, tend to 
be more nearly broad-banded in nature and the probability 
density pTj should reflect this trend by yielding higher 
probabilities for smaller values of t. One way that this can be 
accounted for is to allow the parameter 7 to be a function that 
depends somehow on the degree of nonstationarity of the 
response. For excitation processes with monotonically in
creasing evelopes d(t), it has been found by simulation 
studies that satisfactory results are obtained by using a 
probability density of the form 

PTlV)=7,t''l')e C 
(23) 

where a(t) is the instantaneous variance of the response and 
as(t) is the stationary response variance associated with the 
instantaneous value of the excitation. Other assumptions 
could be made concerning the nature of 7. However, the form 
selected possesses the desired qualitative features to account 
for some of the effects of nonnarrow-bandedness and 
generates acceptable response results. 

After modifying the form of pT{ (t), it is assumed that the 
probability density of the response may be approximated by a 
stationary density over one period of the system. It is further 
assumed that the first barrier crossing during a period of the 
system will occur with approximately the same frequency as if 
the response were truly stationary. Making these assumptions 
an expression for the instantaneous first crossing rate <*(/) 
may be derived in a fashion entirely analogous to the 
derivation of the limiting decay rate given by equation (13). 
For the nonstationary case, this expression takes the form 

«(/) = 
-2vb(t)ln[P*.(i)\ 

[l + o 4 (0 /o j (0 ] [ l - i ' 6 (0 /« 'o ] 
As in the stationary case, vb is given by 

S CO 

Qxp(b,x,t)dx. 

(24) 

(25) 

Using the quasi-stationary assumption to specify p{x,x,t) and 
integrating gives 

"b 
VDet(Q) r / 1 , , \ 

irqn L \ 2 / 

levels. The present results appear to correspond well with 
simulation results for the damping levels shown. 

Extension to Nonstationary Response 

Using the results for stationary response, the nonstationary 
response problem may be treated approximately by applying 
the approach proposed by Corotis, et al. [6]. Let the dif
ferential equation of motion of the system be 

x + 2fa0x+o>0
2x=6(t)w(t) „ 

x(0) = 0, i(0) = 0 

where w(t) is a white noise process with spectral density S0, 

where 

7T / 1 b1 \ „ / Z>cA12 \ 
- ^ 2 ^ e x P ( - - - ) e r f c ( ^ J (26) 

* ( 0 = [*</(0] = Q - 1 ( 0 (27) 
and Q is the covariance matrix of the joint probability density 
of x and x at time t. 

The procedure to obtain P* (t) is similar to that followed to 
determine the corresponding quantity P* for the stationary 
case. However, the excitation intensity is now 82 (t)S0. With 
vb (t) and P* (/) thus specified, equation (21) may be used to 
obtain approximate first passage probability for non-
stationary response. 
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From the definition of the first passage probabilty W{t) 
and the fact that W(0) = 1, it is seen that 

W(0=exp - f a(s)ds . (28) 

Hence, the first passage probability densitypc (t) will be 

/UO=a(Oexp[- j o a( j ) f l fc] . (29) 

Numerical Example 

To obtain an indication of the accuracy of the approximate 
nonstationary solution, consider the special case of an 
oscillator subjected to a suddenly applied white noise. That is, 

0 ( 0 = 1 ; -V-f>0 (30) 

Figures 4-7 show the first passage probability as a function 

C = 0 0 4 

b/cr= I 0 
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POISSON PROCESS ASSUMPTION 

SIMULATION 

0 1 2 3 4 5 

T I M E , t / T 

Fig. 7 Probability of exceedance versus time, f = 0.04, bla = 1.0 

of t/T where Tis the undamped natural oscillator period. The 
integration in equation (28) is performed numerically for this 
study. Also displayed are the approximations resulting from 
the Poisson process assumption and Vanmarcke's method. 
For comparison, simulation results obtained from ensembles 
of 1000 times histories are also shown. 

As a general observation, it will be seen that the present 
analysis gives a reasonably good estimate of the probability of 
exceedance over the range of parameters considered. As might 
be anticipated, the poorest results are obtained when the 
probability is a rapidly varying function of t/T. In this case, 
the effects of broad-bandedness and nonstationarity are 
strong and the assumptions of the analysis are stretched to 
their limits. If the modification of pT{ (t) for broad-
bandedness according to equation (23) is not made, the 
transient results for cases of low barrier level are particularly 
poor even though the limiting decay rafes are quite 
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reasonable. It is quite possible that alternative assumptions on 
the form of PT

j 
(t) might yield results that are even more 

accurate than those presented herein. 
Except for the case .I = 0.04, bl (J = 1.0 the results of the 

present analysis represent a substantial improvement over the 
Poisson process assumption. In the early stages of the 
response when the process is broad-banded, the Poisson 
process assumption is fairly accurate. However, as the process 
becomes more nearly narrow-banded, this approach con
siderably overestimates the probability of exceedance as 
anticipated. Only when the probability of exceedance is a very 
strong function of tiT as in the case of .I = 0.04, bl(J = 1.0 
does the Poisson process provide a somewhat reasonable 
estimate of the response. In this latter case, both the present 
approach and Vanmarcke's approach underestimate the 
probability of ex~eedance over most of the range of tiT. 

In most cases, the accuracy of the present approach is 
comparable to that of the Vanmarcke estimate. The only case 
where the two approaches give substantially different results 
is for .I = 0.01, bl (J = 2.0 where the present approach gives 
an improved estimate. 

Finally, it may be noted that the accuracy of the present 
approach appears to be quite uniform as a function of \, bl (J 
and tiT. The range of parameters considered is not exhaustive 
but the results presented are felt to be representative of 
general trends that may be expected for other parameters 
values. 
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A Conservation Theorem for 
Simple Nonholonomic Systems 
When the Hamiltonian of a holonomic system is free of explicit time dependence it 
remains constant throughout all motions of the system. In this paper, it is shown 
how, given a homogeneous simple nonholonomic system S, one conform a function 
E that remains constant throughout all motions ofS, providing the forces acting on 
S fulfill certain requirements. An illustrative example is examined in detail. 

1 Introduction 

It is a well known and most useful fact that the 
Hamiltonian H of a holonomic system S possessing n degrees 
of freedom in a Newtonian reference frame N furnishes an 
integral of the equations of motion of S when the time t does 
not appear explicitly in H. It is the purpose of this paper to 
establish the validity of an analogous proposition applicable 
to homogeneous simple nonholonomic systems. 

To set the stage for the general discussion that follows, 
equations of motion for a specific nonholonomic system are 
written and a first integral of these equations is set forth in 
Section 2. Next, a conservation theorem is stated and proved 
in Section 3. An explicit procedure for constructing a first 
integral based on this theorem is then set forth in Section 4. 
Finally, in Section 5, the procedure of Section 4 is applied to 
the system considered in Section 2. 

2 Example 

Figure 1 shows a system S formed by two particles, A and 
B, and a rigid rod, C, which connects A and B and has a 
length L. Particle A has a mass a, B a mass /3, and C a mass 
that is negligible in comparison with a and j3. S is free to move 
in a vertical plane containing the axes x{ and x2, and a force 
having components of magnitudes \P\ and \Q I is applied to 
A, while a force of magnitude \R\ acts on B, the various 
forces being directed as shown in Fig. 1. (S may be regarded as 
an idealized representation of a rocket.) 

Letting k be a constant, p the position vector from 0 to A, 
and ii[ and n2 unit vectors directed as shown in Fig. 1, sup
pose that P and Q are specified as 

P=k, e = - - p . n 2 ' (1) 

while R takes on whatever values are necessary to keep the 
velocity vector of B parallel to n,' at all times. Then, ifqlt q2, 
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Fig. 1 System S 

and <73 measure two distances and an angle as indicated in Fig. 
1, Q can be expressed as 

AT 
(2) 

where s3 and c3 stand for sin q3 and cos q3, respectively, and 
the requirement that the velocity of B must be kept parallel to 
n, leads to the differential constraint equation 

<J)=(.siql-ciq2)/L (3) 

where dots denote time differentiation. Two additional 
differential equations governing qu q2, and q3, formulated 
with the aid of Newton's Second Law, can be written 

qtc3+(q2+ g)s3 -0Lql/{a + 0) = P/(a + (S) (4) 

and 

QiS3-(q2+8)c3= -Q/u (5) 
where g is the local gravitational acceleration; and, while not 
needed in the sequel, a third differential equation, based on 
the angular momentum principle, can be used in conjunction 
with equation (3) to show that 
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R = M3<,c3q\+s3q2) + gc3] (6) 

which is of interest because it is an explicit statement of the 
feedback control law associated with equation (3). [If A and B 
are supported by a horizontal plane on which A can slide 
freely, whereas B is prevented from moving perpendicularly 
to C because a sharp-edged knife blade is embedded in B (but 
B can move freely in the direction of C), then equation (3) 
applies and, with g set equal to zero, equation (6) describes the 
force exerted on B by the supporting plane.] 

If £ is defined as 

Ek(a + l3M + q2
2)-P(Lqi)

2]/2-k(glci+q2s3) 

+ g[(a + ®qi+PLs3] (7) 

then the equation 

E=E0, a constant (8) 

is a first integral of equations (3), (4), and (5); that is, qx, q2, 
q3 satisfy equation (8) whenever they satisfy equations (3), 
(4), and (5) [with k in place of Pin equation (4) and k(qxs3 -
q2c3)/L in place of Q in equation (5)]. To verify this, start by 
differentiating equation (7) with respect to t, which yields 

E=(a + (3)(qlqi+q2q2)-l3L2q3q3-k[qlc3+q2s3 

-q3(qiS3-q2c3)]+g[(a + P)q2+PLq3c3] (9) 

Next, solve equations (4) and (5) for q\ and q2, obtaining 

Q , P+PLql 
qi = --s3 + TT~ci (10) 

a a + p 

and 

.. Q P+$Lq\ 
q2=-c3 + — — — s3-g ( i i ) 

a a + p 
and differentiate equation (3) with respect to t, thus showing 
that 

q3 = \q3(c3q\ +s3q2) -(q2c} - q^^/L (12) 

or, in view of equation (5), that 

Lq3=q3(c3qx +s3q2)+gc3-Q/a (13) 

Substitution from equations (10), (11), and (13) into equation 
(9) in order to eliminate all second derivatives then yields 

E=P(c3ql+s3q2) + {.Q/a)[(a + P)(c3q2-s3qx) 

+ p~Lq3]-k[qlc3+q2s3-q3(qis3 -q2c3)] (14) 

which, upon elimination of q3 with the aid of equation (3), is 
seen to imply 

k 
E=[Pc3-Qs3 -kc} + -s3(.qiS3 -q2c3)]qt 

+ [Ps3 + Qc3-ks3 - - c3(q{s3 -q2c3)]q2 (15) 

Finally, use of equations (1) and (2) to eliminate P and Q from 
the last equation leads to the conclusion that the coefficients 
of qt and q2 are identically equal to zero, which means that 
E = 0 and that, therefore, equation (8) is, indeed, an integral 
of equations (3)-(5). However, this does not answer the 
following rather natural question: Where did E originate? Or, 
to put it another way, how is E as defined in equation (7) 
related to the gravitational forces and the forces P, Q, and R 
acting on S? 

It is easy to see [by taking equation (3) into account] that 
[(a + pXtff + q\) - h(.Eq3)

2]/2 is the kinetic energy of S. 
Similarly, after g[(ct + $)q2 + fiLs3] has been rewritten as 
(a + /3)g/i, where h is the distance from the mass center of S to 

line xu this term of equation (7) is seen to have a form 
familiar in connection with energy considerations. But to 
explain the origin of the middle term in equation (7) we must 
first undertake a general discussion of the relationship be
tween forces, generalized speeds, and a certain function Kof 
the generalized coordinates used to characterize the con
figuration of a system. 

3 Theorem 

Consider a set S of c particles Px P„ whose per
missible configurations in a Newtonian reference frame iV can 
be characterized by n generalized coordinates qx,. . . , q„ and 
which is subject to motion constraints such that the m 
equations 

p 

qs=Y,(Zsrqr) (s=p+l, n) (16) 

are satisfied throughout every motion of S in N. Here p, 
defined as p^n — m, denotes the number of degrees of 
freedom of S in iV; Zsr (r= 1, . . . ,p\ s=p+ 1, . . . ,ri) are 
explicit functions of qu . . . , q„, and, possibly, the time t. 
Under these circumstances, S is called a homogeneous simple 
nonholonomic system. 

Let Eu . . . , Fp denote the nonholonomic generalized 
active forces [1] associated with <j,, . . . , qp, respectively; let 
Kbe any function of qx, . . . ,qn that satisfies the equations 

dV ^ dV 
^r+ E ^ r z - = - ^ ( ' = 1 , ••••,•/>) (17) 

oqr s=P+i dqs 

Finally, define E as 

E^i(^Q)-K+V (18) 
~ V dqr / 

where K, the kinetic energy of S in N, is presumed to be ex
pressible as a function of qx, . . . , q„ and qx, . . . , q„, but 
not explicitly of t. Then E remains constant throughout every 
motion of S in TV that satisfies equations (16) and the 
dynamical equations (see [1]; p. 177) 

Fr+F* = 0 (r=l,...,p) (19) 

where F*, . . . , F* are the nonholonomic generalized inertia 
forces (see [1], p. 89) associated with qx, . . . , qp, respec
tively. 

The proof of this theorem hinges on a proposition 
established by Passerello and Huston [2], namely that 
F*(r = 1, . . . ,p) can be expressed as 

„_ dK d dK y / dK d dK\ 
Fr~ Wr ~ ~dt Wr +

 J=7tl W " ~dt WsS" 
(r=l,...,p) (20) 

For substitution of Fr from equations (17) and F* from 
equations (20) into equations (19) yields 

d dK dK dV y / d dK _ dK dK\ 

dt dqr dqr dqr s*f+ x \dt dqs dqs dqj sr 

(r=l,....,p) (21) 

and, as will be shown presently, the first time-derivative of E 
as defined in equation (18) is given by 

. f rrf dK dK dV 
E= } . \ + 

fTi L dt dqr dqr dqr 

*p, / d dK dK 3K\ 1 . 

sJ^+1\dtdqs dqs dqj J 
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so that, substituting from equations (21) into equation (22), 
one finds that £ = 0 , which means that £ is a constant. 

To establish the validity of equation (22), it is helpful, first, 
to rewrite equation (18) with the aid of equations (16) as 

-K+V 
r=\ N 0</r ' s=p+] La(ls r= l J 

Differentiation of this equation with respect to / gives 

dK A . 1 . . 
+ -^rh (Zsrqr+Zsrqr) -K+ V 

(23) 

(24) 

Now, 

k vS / d K dK 

,+• 

\ f̂  / dK . dK \ 

so that, making use of equations (16), one can write 

,=7ti ^ ' 
(25) 

s=p+l dqr 

dK •A . . .. "I 
+ ~fa7 L (ZsrQr+ZsrQr)\ 

dQs r=l 

Similarly, V can be expressed as 

r=l y°qr ' s=p+l 
V 

dv A 
^— L (ZsrQr) 

(26) 

(27) 

Subst i tut ion from equat ions (26) and (27) into equat ion (24), 
and subsequent interchanging of the order in which double 
summat ions are performed, leads to equat ion (22), and thus 
concludes the proof. 

It is wor th point ing out that the theorem under con
sideration may be regarded as a generalization of a familiar 
one applicable to ho lonomic systems. If S is not subject to 
constraints represented by equations (16), one can set 
Zsr(r—l,. . . ,p;s=p + 1, . . . , ri) equal to zero in equat ions 
(17); F t h e n reduces to the potential energy of S i n TV, and E as 
defined in equat ion (18) becomes the Hami l ton ian of S in TV. 

Finally, it is at times helpful to recall the fact tha t , if A" is a 
homogeneous quadra t ic function of qx qn, then 
equat ion (18) can be replaced with 

E=K+ V (28) 

(This is true bo th when S is a homogeneous simple 
nonholonomic system and when S is holonomic. ) 

4 Procedure 

Having established in the preceding section that one can 
write an integral of the constraint equations, equations (16), 
and the dynamical equations, equations (19), namely, E=E0, 
where E is given by equation (18), provided one can find a 
function V of qx, . . . , q„ that satisfies equations (17), we 
shall now show how to either find For prove its nonexistence. 
To these ends, one may take the seven steps that follow. 

Step 1. Introduces quantities fs_p (s =p+\,. . . , ri) as 

f ± 
dV 

(s=p+l, ,n) (29) 

and regard fs_p as a function of qx, . . . , q„ except when for 
some value of r in equat ions (17), say /• = /', TF, is a function of 
only qt and , in addi t ion, 

dV 
1— = -Ft (30) 

In that event, let fs_p (s=p+l, . . . , n)be freeof qt. [Unless 
this is done, equations (29) and (30) lead to conflicting ex
pressions for the second partial derivatives of V with respect 
to <7, and #,.] 

Step 2. Use equations (29) to eliminate dV/dqs (s=p + l, 
. . . , / ? ) from equations (17) to obtain 

dV " 
T - = " E ZJr-p-Fs {S=\,...J>) (31) 
°Hs r=p+l 

Step 3. Wri te n (n —1)/2 linear algebraic equat ions in the 
mn quanti t ies d/,/3<7; 0 ' = 1 , . • • ,m; j=l, . . . , « ) by sub
stituting from equat ions (29) and (31) into 

dq/ \ dqt) dq{ V dqj ) 

Step 4. Identify an n(n- l ) /2 by mn matrix [W] and an 
n(n-\)/2 by 1 matrix [ Y] such that the set of equations 
written in Step 3 is equivalent to the matrix equation 
[W]!^) = ( 7 | , where {X} is an mn by 1 matrix having 
dfj/dqj(i=l, . . . , m; j= 1, . . . ,«) as elements. 

Step 5. Determine the rank p of [ W]\ select arbitrarily any 
p rows of [W], hereafter called the independent rows of [W], 
and express each of the remaining rows, hereafter called the 
dependent rows, as a weighted, linear combination of the p 
independent rows; and determine the weighting factors by 
equating corresponding elements of the matrices in the 
resulting equations. 

Step 6. Express each element of { Y] corresponding to a 
dependent row of [W] as a weighted, linear combination of 
the p elements of { Y] corresponding to the independent rows 
of [W], using the weighting factors found in Step 5, and solve 
the resulting equations for/, (/= 1, . . . ,m). If this cannot be 
done uniquely, or if one or more offx, . . . / „ , turns out to be 
a function of a generalized coordinate of which it should be 
free (see Step 1), then Kdoes not exist. 

Step 7. Substitute the functions fu . . . , /,„ into 
equations (29) and (31), thus obtaining d V/dqr (r=l ri) 
as explicit functions of q , , . . . , qn, and determine V by 
performing the quadratures indicated in the equation 

f i dV 

d<7i 
fiW 

\: 
"2 dV 

dq-
(<7,,r,0, . . . ,0)tff 

. + i: dV 
(<7i . t f„- i . JW (33) 

Steps 5 and 6 cannot be taken as indicated when p as found 
in Step 5 is equal to n(n-1)/2. In that event, Fexists only if 
m={n-r-1)/2. [A well-known case in point is that of the 
rolling disk, for which the set of equations formed in Step 3 is 
homogeneous in the quantities dfj/dqj ( /=1 , . . . ,m; 
j=\ ri); in other words, all of these derivatives are 
equal to zero. Consequently, / [ , . . . / „ , are constants.] 
Under these circumstances, one can proceed directly to Step 7. 
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The rationale underlying the procedure just set forth is the 
following. Step 1 is taken in recognition of the fact that 
equations (17) form a set of p equations in the n quantities 
dV/dq-, (/"= 1, . . . ,«), so that m additional relationships are 
required for the determination of all of these derivatives. In 
Step 2, the construction of a set of equations uncoupled in the 
partial derivatives dV/dqr ( r = l , . . . ,ri) is brought to 
completion. Step 3 consists of imposing requirements that 
must be satisfied in order that V possess continuous first 
partial derivatives. Steps 4, 5, and 6 allow one to determine/, 
(/= 1, . . . ,m) by making use of the fact [3] that the matrix 
equation [ ^ [ X ) = ( Y) can be solved for [X] if and only if 
the rank of [W] is equal to that of the matrix [ [ H ^ y } ] . 
Finally, in Step 7, the procedure employed by Schultz [4] to 
construct Liapunov functions is employed to find V. 

5 Application 

At the end of Section 2, the origin of the middle term in 
equation (7) was left unexplained. We shall now show that 
this term emerges when one implements the procedure of 
Section 4. 

The system S considered in Section 2 possesses three 
generalized coordinates and is subject to one motion con
straint expressed by an equation having the form of equations 
(16), namely, equation (3). Hence, « = 3, m = l, and p = 2. 
Consequently, one must form Zsr and Fr for r = 1, 2 and s = 3 
in preparation for applying the procedure of Section 4. 

The quantities Z31 and Z32, found by comparing equation 
(3) with equations (16) are given by 

Z3l=s3/L, Z32=-c3/L (34) 

To determine the generalized active forces Fl and F2, one 
needs the nonholonomic partial velocities vA and vf (/•= 1,2) 
of A and B, which are, by definition, the coefficients of 
qr{r = 1,2) in expressions for the velocities, \A and \B, of A 
and B in N. Now, if n , , n2 , n,', and n2 are unit vectors 
directed as shown in Fig. 1, then 

vA=qlni + q2n2 (35) 

and 

V s =yA + Lq3Tl2 (36) 

or, after q3 has been eliminated by reference to equation (3), 

yB=(nl+s3ni)ql+(n2-c3ni)q2 (37) 

Hence, from equation (35), the nonholonomic partial 
velocities of A are 

vf = n, , v? = n2 (38) 

while, from equation (37), those of B are 

vf = n,+s3n2 ' , vf = n 2 - c 3 n ^ (39) 

In addition to partial velocities, expressions for F^ and ¥B, 
the external forces acting on A and B, respectively, are 
required for the formation of the generalized active forces Fx 

an&F2. From Fig. 1, 

FA=Pn{ + Qni-gan2, ¥B=Rni -g/3n2 (40) 

Consequently, F{ and F2, found by substituting from 
equations (38)-(40) into 

Fr = vf.FA+v**FB ( r= l ,2 ) (41) 

are given by 

F , =n1-(Pn1 ' + Qn^-go;n2) + (n1 + s3n£) 

>(Rn2'-gPn2) = Pc3-(Q + gPc3)s3 (42) 

and 

F2 =n2-(Pn,' + Qui -gom2) + (n2 -c3n2
,)'(Rn2' -g/3n2) 

= (P-gPs3)s3+Qc3-ga (43) 

or, after Q and P have been eliminated with the aid of 
equations (1) and (2), 

" * [ • ci- — {qis3-q2c3) J -gps3c3 

and 

!=*[' c3 

•«3 + Y ^ i * 3 ' <72C3 >]-*(« +I&?) 

(44) 

(45) 

Since K, the kinetic energy of S, is a homogeneous 
quadratic function of qu q2, and q3, substitution from 
equations (34), (44), and (45) into equations (17) leads to the 
conclusion that K+V furnishes an integral of equations 
(3)-(5) when P and Q are given by equations (1) and (2), 
provided that Kbe a function of qx, q2, and q3 that satisfies 
the two equations 

- - * [ , C 3 - ^ ( ? l * 3 - 9 2 C 3 (46) 
dV dV s3 

dV _ dV c3 __ r 

dq2 dq3 L L 

All of the information required to implement the procedure of 
Section 4 is now in hand. 

Step 1. In accordance with equations (29),/j is introduced 

)] +gPs3c3 

• ' ] • s3 + — (q1s3-q2c3)\+g(a + ps2
3) (47) 

dV 

dq3 

f A " (48) 

and is regarded as a function of qx, q2, and q3 because Fx and 
F2 each are functions of all of these variables, as can be seen 
by reference to equations (44) and (45). Since/, is the only 
function introduced, the subscript 1 is omitted hereafter. 

Step 2. When equation (48) is used to eliminate dV/dq3 

from equations (46) and (47), the following equations 
corresponding to equations (31) result: 

dV s3 r s3 1 
~fT ~klC* ~~ T (*i J3 -?2C3)J + ^ 3 C 3 <49) dq{ 

dV 

dq2 

=f~ -k[s3 + j - (qlS3 -q2c3)] +g(a + (3s2
3) (50) 

Step 3. Differentiating equation (49) partially with respect 
to q2, equation (50) with respect to qx, and equating the 
results gives 

C3-T— + S J 7 - = 0 
d<7, dq2 

(51) 

Proceeding similarly in connection with equations (48) and 
(50) one has 

df c3 df 

dq2 L8q3 " L C j + T ( C ' ^ ) + T ¥ ! l 
= -fr[e 

+ 2gl3s3c3 
fs, (52) 

while equations (48) and (49) yield 

= k\s3 + 
dQi L dq3 

21i , Q2 , 2 
— s3c3 + -(sh 

cj)] 

-gl3(s2
3-c

2
3)-

M (53) 

Step 4. Inspection of equations (51)-(53) shows that this 
set of equations is eqivalent to [PK|W = {Y] if [W], {X}, 
and [ Y] are taken to be 
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[W\' 

IX) ^ { 

C3 S3 0 

0 1 -c3/L 

1 0 s3/L 

df/dq, -) 

df/dq2 

df/dq3 

(54) 

(55) 

the integral under consideration if S is rendered holonomic by 
removal of both the force of magnitude \R I and the 
requirement that the velocity vector of B be parallel to n, at 
all times. In that event, S possesses three degrees of freedom, 
the three associated generalized active forces are given by 

-k\c (<l\S3-q2c3)\ 

and 
: = *[ c3 

*3 + "T (9l*3 ' -92C3)J •g(a + |8) 

(65) 

(66) 

n i -k[ci+^{cl-sj)+-^s3c3]+2g^c,-f^ 

[s3 + ^s3c3 + ^ (sj - c ? ) ] -gP(sl-cl)-
L 

(56) 

Step 5. [W] is singular, but possesses a nonvanishing 
determinant of order two. Hence, p = 2. Selecting the first two 
rows of [W] as independent, and hence the third row as 
dependent, we express the third row as 

[1 0 s3/L] = wl[c3 s3 0] + w2[0 1 -c3/L] (57) 

where w, and w2 are weighting factors. Equating first 
elements on the right-hand and left-hand sides of equation 
(57), one finds that Wj = l /c 3 , and equating second elements 
then leads to w2 = -s3/c3. 

Step 6. Expressing Y3, the element in the third row of ( Y] 
in equation (56), as w, y, + w2Y2, where Yt and Y2 are the 
elements in the first two rows of ( Y], one has 

4 2g, 
s3 + ~j^s3c3 

L 

= ^k 
c3 

+ ^ ( ^ - C 2 j _ g j 3 ( 5 2 _ c 2 ) . 

]-2gps2
3 + C 3 + £ 0 * - * J ) + ^ , C , L c3 

which reduces to 

f=k(qls3-q2c3) + g(3Lc3 

(58) 

(59) 

Step 7. Substituting / as given in equation (59) into 
equations (48)-(50), one obtains 

dV 
= -kc3 (60) dqt 

dV 

dq2 
-ks3+g(a + (3) 

dV 

dq: 
= k(qxs3-q2c3) + g$Lc3 

(61) 

(62) 

and, proceeding in accordance with equation (33), one can 
express Kas 

V= [ "' [-Arcos(0)]ctf+ f "2 [-foin(O) 
Jo Jo 

+ g ( a + /3)]c?f+jo
3 [Ar(0,sinf-<72cos0 

+ g/3Lcosf]c?r (63) 

so that, after performing the indicated quadratures, one finds 
that 

V=-k{qlC3+q2s3)+g[(a + f3)q2 + (3Ls3] (64) 

Clearly, E as defined in equation (7) is simply K+V. 
It is interesting to note that there exists no counterpart to 

F3 = -g$Lc3 (67) 

and Sis nonconservative becauseFUF2 , andF3 do not satisfy 
the equation dFr/dqs = dFs/dqr for all r and s that differ from 
each other (r, s= 1, 2, 3). 

Lastly, the following point deserves attention: Once it has 
been established in connection with a particular system that E 
as given in equation (18) or equation (28) remains constant, 
one can work with variables other than qx, . . . , qn, such as 
generalized speeds [5], when writing the integral E=E0. For 
instance, introduction of generalized speeds u{ and u2 as 

Ui^c3qx+s3q2, u2^-s3qt+c3q2 (68) 

is advantageous in connection with the example at hand 
because this makes it possible to replace the governing 
equations, equations (3)-(5), with the simpler relationships 

q3 = -u2/L (69) 

1 ' ~ " "• -gs3 (70) 
ct + i ('-Z"0-

u2= - + 7UiU2-gc3 

Since the kinetic energy of S now can be expressed as 

1 
K= (a + fi)uj + aui\ 

(71) 

(72) 

one can appeal to the theorem in Section 3 to write the 
following integral of equations (68)-(71) when P and Q are 
given by equations (1) and (2): 

-y(a + $)u\ + au2^-k(qlc3+q2s3) + g[(a + P)q2 

+ PLs3]=E0 (73) 

This result can serve as a check on a numerical simulation of 
motions of S when the integration algorithm used for this 
purpose is based on equations (68)-(71). 
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Nonlinear Analysis of a Dynamical 
System Being Pulled by Cables 
Offshore pipeline must, in certain situation, be pulled by means of cables placed in 
a barge. An important nonlinear aspect of the wave-induced dynamic motion is the 
fact that the cable can become loose. This paper analyzes a simplified dynamical 
model whose steady state is obtained analytically. A feature of this model is that the 
output steady state frequency changes from a> to co/2 as the input (wave) frequency 
0) increases. An order of magnitude analysis shows that this nonlinear effect is of 
importance for the usual offshore pipeline. 

Introduction 
During the operation of laying a pipeline on the ocean 

floor, it is sometimes necessary to abandon it at the bottom 
and, afterward, to pull it back to the laying barge. This 
operation is usually done by means of davits, placed on the 
barge, and connected to the pipeline by means of cables. In 
the absence of surface waves, the problem is static and highly 
nonlinear. 

Several methods were developed aiming to determine the 
static equilibrium configuration and the static stresses; see, 
for instance [1-3]. Once an equilibrium position has been 
reached we can "turn on" the waves and evaluate the dynamic 
stresses. The dynamical displacement is of the order of 
magnitude of the wave amplitude and much smaller than the 
static one. This makes possible to linearize the dynamical 
motion by considering it as a small perturbation around a 
known equilibrium configuration. In spite of this, two sources 
of nonlinearities remain. The first is the viscous drag that can 
generally be linearized. The second is related to the fact that 
the cable can become loose, introducing stresses that can be 
dangerous to the pipe and cable. The objective of this paper is 
to study this second form of nonlinearity. Due to the inherent 
complexibility of the problem some simplifications are needed 
and in what follows, we introduce the most obvious sim
plifications that still contains the main features of the 
dynamical pipeline problem. 

Simplified Model 

Consider the static equilibrium position of the pipeline, 
indicated in Fig. 1, where A is the amplitude of the incoming 
wave and u> its frequency. re is the static tension in the cable 
and we assume that the davit's vertical displacement D is 
given by D(t) = A0 sinwt where A0 = H(u). A and H(a>) is 
the barge's transfer function. Taking in account the effect of 
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buoyancy and the added mass (kinetic energy of the fluid that 
oscillates with the pipeline) we can compute the dynamical 
mass m. Knowing the natural frequency co0, we can determine 
K = m • co0. In this way the dynamics of the pipeline is very 
much similar to the dynamics of the linear spring-mass system 
shown in Fig. 1. The effect of the viscous drag has been 
neglected in the simplified model. A preliminary analysis, 
assuming the cable as being a rigid bar, has indicated that in a 
typical situation more than 10 waves are necessary to reach a 
steady state, showing that the effect of the damping is small at 
the time scale of the incident wave. 

The behavior of the system depends basically on two 
nondimensional parameters. 

„ w 0= — 
co0 

P-- (1) 
K>A0 

Clearly the higher Q is and the smaller /3 is, the easier the cable 
will become loose. In the next section we analyze the sim
plified model when /? is fixed and fi is increased continuously. 
We will use, however, an assumption to the checked latter on: 
the typical value of (3 for an offshore pipeline is much larger 
than one (^ > > 1). 

Steady State Analysis of the Model 

Let u~', A0, and kA0 be the time, length, and force scales, 
respectively. In what follows, D(t) = sin/ stands for the 
nondimensional davit's displacement and r(t) = p+p(t) is 
the nondimensional force in the cable. The equation to be 

D(t )=A„s in u/t 

7fTTn7T7777777777777T777Tn777T7TT7T7Tt 

Fig. 1 Offshore pipeline and simplified model 
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solved is then: Q2 y + y = p(t). There are two different sort 
of solutions for this equation. First the cable is fastened and 
the mass follows the davit. Second, the cable is loose and r(t) 
= 0. The fastened solution is given by 

FASTENED 
— LOOSED . 

yf(t)=D(t)=smt 

Tf(t)=f3-(ti2-mnt 
(2) 

A necessary condition for the cable to become loose is that 
Tf(t) = 0. For j3 > 1 this is possible if and only if Q > Q] = 
(1 + P)Vl. Assuming j3 > > 1 we can take this condition as Q 
> 0) = |3'/2. It is convenient then to define 

Q = a-(3V> (3) 

For a <, 1, the cable will always be fastened. 
We next study only the case a > 1, and latter on we show 

that this condition is also sufficient for the cable to become 
loose. Let us assume that the motion has started at time t = 0. 
The cable is initially fastened and since a > 1 it will become 
loose at the time t0 < ir/2 where: 

/S 1 
smt0(a)=wz-l^-2 (4) 

We must now determine the loose solutiony, (t). In this case 
r(t) = Oandp(t) = - ) 3 . 

It follows then that fi2 y{ + y{ = — (3. For future reference 
let us assume that the^cable becomes loose at t = t and soy(t) 
= sin t,yt(t) = cos t. Using At = t—t, the cable will remain 
loose if e(At) = D(t) -y, (t) <0 for At > 0. Since /3 > > 1 
we take At/J,a(Hy')< <1 in the expression for e(At). If -y = 
(sin tQ/sm t) = (a2 sin ?)- ' then the loose solution can be 
written as: 

y,(t; t) = - / 3 + (/3 + sin t) cos [(t-t)/a(3'A] 

+ P1/2.cccost'sm[(t-t)/al3'A] 

e(At\ t) = sin? cos At 

+ ^y(At)2- ' ] -1 -cost[At-smAt] (5) 

For t = t0 and a > 1, but otherwise arbitrary, e(At) <0 at least 
for At small enough. The condition a > 1 is then sufficient 
for the cable to become loose. It will become fastened again 
for a particular At0 = At0(a) at which e(At0; t0) = 0. From 
(4) and (5) we obtain that A/0(a) must be a root of the 
equation: 

co sA/ 0 +0 .5 (A^) 2 - l 
r— = cotg t0 = (a4 - 1)A (6) 

Â o - sin At0 

It can be shown that equation (6) has a solution and this 
solution is unique (see [5]). The uniqueness does not imply 
that y, crosses D(t) just once. They will cross each other an 
infinitude of times, but at such At where the approximation 
At I (a/3'/!) < < 1 is not valid anymore. Let us now study some 
properties of the root At0(a) of equation (6). Referring to Fig. 
(2), we define the functions C(a) = 7T-2 t0(a); G(a) = 
At0(a)-C(oi); S(a) = 0.5 \At0(a) + G(a)] as indicated. 

It can be shown (see [5]) that At0(a), C(a) , G(a), and S(a) 
are all positive and monotonically increasing with a. Since 
G(a) > 0, At0(a) > C(a); that is, -y,(t) will cross yf(t) 
outside the first "compression zone," for arbitrary a > 1. 
The fact that S(a) increases with a has important con
sequences. Point (S) in Fig. 2 moves to the right as a in
creases. There exist then values a2 < ots < a6 for which B = 
B2, B = B5, and B = B6, respectively, as indicated in Fig. 2. 
For a = a2, At0 = t(B2)-t0 = 2ir, and, using equation (6), 
a2 = (1 + TT2)'7' = 1.82. For a = a6,At0 = t(B6)-t0 = 4TT 
andsoa 6 = (1 +4TT2) , / I = 2.52. For o: = a5 , At0 = t(B5)-
t0=3ir-2t0(a5). Placing this value into equation (6) and 

"COMPRESSED" Z O N E ( g f < 0 ) 

Fig. 2 Graphic representation of equation (6) 

At„K) } At,K) I 

h(«0 

4TT 
hK)=At„K) + A t , ( ^ ) 

Fig. 3 

« 2 ^ 4 ^ 5 ^ 

Typical solution lor a 4 < a < « 5 

using equation (4) we obtain a transcendental equation in a5, 
which can be solved numerically. The result is as = 2.15. 

Since S(a) is monotonically increasing then the equality 
y, (t) = yf(t) holds at a t = t(B) where («) B is between Bt 

a n d 5 2 if 1 = a^ < a < a2; (b) B is between B2 and B5 if a2 

< a < a5; (c) B is between Bs andB 6 if a5 < a < a6 . Let us 
now analyze a solution of class (a) (1 = cxx < a < a2). The 
cable becomes loose at t0 = t0(a) and fastened again at t(B) 
= t0 + At0, where A/0(a) is a solution to equation (6). Af
terward the mass follows the davit until the time t = t0 + 2ir 
is reached, when the cable becomes loose again. Solutions of 
class (a) are then periodic, nonharmonic, with period 27r 
(frequency co). Notice that in B the mass velocity changes 
abruptly from y,(tB) to D(tB) = yf(tB) = cos tB. This 
introduces an impact load on the cable given by p(t) = fl2. 
[D(tB) -yi(tB)] b(t-tB), where 5 is the Dirac function. A 
similar sort of analysis shows that solutions of class (c) are 
periodic, with period 4ir (frequency co/2). Solutions of class 
\b) are more difficult to be analyzed. In fact y,{t) crosses 
D(t) in a point B, within the "compression zone." The mass 
adjust its velocity, making it compatible with the davit's 
velocity, but since rf < 0 the cable becomes loose again. 
Figure (3) displays the typical situation, _, 

Solutions yt
 < 0 )(0 andj>/(1)(0 are given by equation (5), with 

£=t0(a) and i=t{{a) = t0 + At0, respectively. Equality 
y^)(t) = yf(t) holds for t = t2 = t{B) =tx+ At i (e(Ar,; t{) 
= 0) where At\ satisfies the following equation: 

7 = (a2 • sin f) ~' 

cosA?+0 .5 -7 ' (A?) 2 - l 

A?-sin A? 
= cotg? (7) 

with t = t{ and At = Att. It can be shown that, for a2 

< a < a 5 , equation (7) has a unique solution (see [5]). Notice 
that as a—a2, t{ -»t0 + 2w, 7—1 and A/, — 2TT. On the other 
hand, as a ~ a 5 , tx —10 +2% C(a), 7—1 and At{ -~0 since cotg 
tx « - co tg t0<0. We observe here the following: At, the 
time elapsed before y, (t) cuts again D(t) = yf{t), increases 
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with the initial velocity cos t; see equation (5). For >v(0)(0 the 
initial velocity is cos ta(a), and since t0(a) decreases with a, 
At0(a) increases with a. For y/w{t) the initial velocity is cos 
tx(a), and since tx{a) increases with a, At,(a) decreases with 
a. Let us consider now the function h(a) = At0(a) + At^a). 
Clearly h(a2) = 4ir and h(a5) = lit + C(a5)<4ir. The 
function At0(ci) is increasing with a and At^a) is decreasing. 
It is not difficult to show that h (a) has the structure shown in 
Fig. 3 for a2 < a < a5 . For a = a4 , h (a) = 47r and B = B4; 
see Fig. 3. As a increases, (a > a4) h(a) decreases, and point 
B moves from B4 to B5. For a = a5, Ati = 0 and B = Bs. 
For a4 < a < a5 the solutions have typically the structure 
indicated in Fig. 3. They are all periodic, with period 47r 
(frequency co/2). The threshold'value a4 can be determined 
numerically. It is given by a4 s (4,65 + 7r2)'/4 = 1.95. Notice 
that for a < a2 the solutions are periodic, with period 2ir. For 
a4 < a < a6 the solutions are periodic, with period 47T. The 
region a2 < a < a4 is where the transition takes places, and 
will be analyzed next. 

Quasi-Periodic Solution a2 < a < a4 

To make the notation easier we will call, from now on, tn 

the actual value of t„ subtracted from 2«7r. In this way t\ = tQ 

+ At0-2r; t2=tx +Att -2ir=t0 + At0 + Atx -4ir , etc. Notice 
that t2 = t(B) -4ir , where t(B) is indicated in Fig. 3. For a2 

< a < a4,h(a) = A/0(a) + At,(a) > 4-JT, and At^a) < 2v. 
So t0 <t2 <tx\ that is, the equality y,m(6 = y/n holds at 
t(B) = t2 + 47r, where t(B) is within the "compression 
zone." The situation here is analogous to the transition from 
.V/(0)(0 to yim{t) as shown in Fig. 3. The new solution j / ( 2 ) ( 0 . 
starting at t(B) = t2 + 47r, is given by equation (5), where we 
must use t2 in place of t. 

The equality ^/ (2 )(0 = y/(t) holds now at a time t = t3 + 
6w, where t3 = t2 + At2 -2w, and At2 is a solution to 
equation (7) with t = t2 and At = At2. As we are going to see, 
t} is also within the "compression zone" and, as a matter of 
fact, t0 < t} < (t. We can then define a new funct iony^ (t) 
and a new time t4 = t3 + A<3 - 2TT, where A/3 is again a 
solution to equation (7) with t = t3. In this way, we construct 
an infinite sequence of values (tk j , and we will show next that 
t0 < tk < tit any k > 2 (remember that t0 < t2 < t] if a2 < 
a < a4) . Since tk+l = tk + At^-2ir, where Atk is the 
solution to equation (7) with t = tk, it is worthwhile to 
consider the function 

g(t)=t+At(t)-2ir , (8) 

where At is the solution to equation (7). Notice that tk+i =^ 
g(tk). It can be shown (see [5]) that if «2 < a < <xA and t0 < t 
< t{, then A?(f), the solution to equation (7), is such that 
dAt/dt < — 1. Two important facts are a direct consequence 
of this inequality. First, since A^(^o) = At0 > 2ir and At(ti) 
= Af, < 2TT, there exists one and only one t,t0<i<tl, such 
that At^t) = 2TT. The uniqueness is a consequence of the fact 
that At(t) is monotonically decreasing. Placing At(t) = 2v 
into equation (7) we obtain that 

cos i = - ^ (9) 
cr 

Notice that / i s well defined for all a s a2 = (1 + 7T2)'7* and 
also that g(t) =t. The derivative of A? with respect to t is 
smaller than^ - 1 . So, if ct2 < a < ctA and t0 < t < tt, the 
function g(f), as defined by equation (8), is monotonically 
decreasing with t. By definition tk+i = g(tk) and we have 
already shown that t0 < t2. Now i < ty and so t = g(t) > 
g(ti) = h> leading to the inequality t0 < t2 < i. In the same 
wayti = g(t0)>ti = g(t2)>t= g(i) or t<t2<ti. Also 
t2= gVi)<t4= g(,ti)<i = g(t)andsot2<tA<i. As a 
conclusion we obtain: the sequence of values [ tk} has an even 
(t2k} and an odd subsequence [t2k+[j. The even subsequence 

[ t2k} is monotonically increasing and is bounded from above 
by i{t0 < t2k < t2k+2 < t), The odd subsequence is 
decreasing and bounded from below by t(i< t2k+3< hk+1 — 
ti). By necessity, t\\zn,_t2k-~tL < f and% + 1 — tR > iask~oo 
and, clearly,g(tL) = tR;g(tR) = iL. 

This mathematical convergence can be physically described 
in the following way: if a2 < a < a4 , the cable becomes loose 
at t = t0 and from there on it remains so, exception made to 
the discrete set of values {tk), when the cable becomes in
stantaneously fastened and the mass velocity is adjusted. In 
this range of frequencies the solutions are not periodic, 
although they approach a periodic one as r'—oo. For this 
reason we call them "quasi-periodic." The limiting solution, 
here called by "steady state," has either a period 2-w (when tL 

— t = iR) or else a period 4ir (tL <t< iR). The important 
question is to determine under what condition the limiting 
state is one or the other. We first write the general expression 
of this limiting state and the equation that allow us to 
determine it. With the help of equation (5) this "steady state" 
can be described by the two functions: 

y,(t) = - 0 + (/3 + sin ?i) .cos[ ? - ~ ] 

+ B'A' of cos tL' sin —-r| 

y,(t) = - (3+ (/3 + sin ^ ) ' C O s [ — r f J 

+ / 3 ' / j . a . c o s / > s i n [ ^ f ] (10) 

The first of these is defined for tL < t < tR + 2-ir and the 
second fortR +2ir < t < tL + 4ir. Notice that if tL = t = tR 

the two branches above are the same. To determine the values 
of tL and tR we define tL = t~ AL and tR = i+AR, where 
both AL and AR are positive. Since g (tL) = tR and g (tR) = 
tL,thmA?(tL) = 2ir + AandAt(iR) = 2 T T - A , where A = 

AR + AL. Now At(tL) and At(iR) are roots of equation (7) 
when t is equal to tL and tR, respectively. It is not difficult to 
check that AR and AL must satisfy the following set of 
equations 

—^ (2ir+A)2-sm(t-AL) (1 - c o s A) 
2az 

= 2ir»cos(f-AL) + (A-sinA)cos(7— AL) 

—-, (2TT + A)2 - sin(F+ AR) (1 - cos A) 
2cr 

= 2Tr»cos(F+ AR) - (A - sinA)cos(/+ AR) (11) 

Notice that A = A# = AL = 0 is always a root of equation 
(11). This root is certainly associated with the limiting 
periodic state of period 2ir (tL = t = tR). For a = a2, the 
solution is periodic with period 2TT (see point B2, Fig. 2) and t 
= t0 (see equation (4), (9), and remember that a2 = (1 + 
TT2)'7')- We expect then that for a such that a2 < a < a 4 , but 
close to a2, the sequence (tk} actually converges to 
t(A = AR=AL =0). On the other hand, for a = a4 the 
solution is periodic with period 4ir (point B = B4 in Fig. 3) 
and so we expect that iL-~tQ and iR-~t{ as a—a4 (A^ ?± AL 

T̂  0). The root A = A^ = AL = 0 is, however, defined for all 
a > a2 • Since it should not represent the limiting state for a 
close to a4 , it must become unstable somewhere in the interval 
a2 < a < a4 . The stability analysis that follows is in fact a 
necessary condition for [tk] to converge to t as k-*oo. 
Suppose we start the system at some tk = t + e, where lei 
< < l. If At(tk) = 2w + 8, then tk+l = tk + At{tk)-2ir = 
t + e + 8. Since tk +1 must be in the other side of t, we anticipate 
that 5 = -E(<x). e, where£"(«) > 1. 
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' 2 " 3 ""4 <*• 
Fig. 4 Stable roots of equation (11) 

Observe now that tk+[ —t = -[E(a)-l]e; tk+2-t = + [E 
( a ) - l ] 2 e and, generically, tk+n + i-i=(-l)" • r" (a) > e, 
where /•(«) = E(a)- 1. A necessary and sufficient condition 
for stability is that r(a) < 1. Also, the smaller r(a) is, the 
faster is the convergence. Since lei < < 1 we can write, to 
leading order, yK = (a2 • sin tg)'1 ~ y-ir/(a2-ir2) • e; 
cotg tk = cotg i— [a4 / (a4 - TT2)] • e, where 7 = (a2 • sin t)"1 

= (a4 - TT2)-1 7 2 . Placing At(tk) = 2ir + 8 into equation (7) 
we obtain 8 = -y~' • e. So E(a) = y~l and r(a) = (a4 

- i r 2 ) 1 / 2 - l . F o r a > a2 = (T 2 + 1)1/4, but close to it, r(a) 
< < 1 and the convergence is very fast. As a increases so does 
r(a) and the rate of convergence slows down. The threshold 
value is given by a3 = (4 + ir2)1/4 = 1.93, where r(a) = 1. 
For a > a3 , r(a) > 1, and the solution A = AR = AL = 0 is 
unstable. In this situation the series {tk} certainly cannot 
converge to t and sotL<i< tR. A second-order analysis 
shows that for a = a3 convergence still holds, but the rate of 
convergence is pretty slow. Remember that the condition r(oi) 
< 1 is necessary, although nonsufficient, in order that tL = t 
= tR. A similar analysis shows, however, that a necessary 
condition in order that tL < i < tR is that a > a3. Again the 
convergence is very fast when a is near a4 and slows down as 
a approaches a3 from above. As a conclusion we obtain: for 
a2 :£ a < a3 the root A = AR = AL - 0 of equation (11) is 
stable and the sequence (tk } converges to t. For a3 < a < a4 

the root A = A^ = AL = 0 is unstable. The even and odd 
subsequences of (tk) converges to tL and tR, respectively, 
where tL < t < tR. The value a = a3 is the point where the 
transition from co to co/2 takes place. 

It remains now to determine the nontrivial solution to 
equation (11) for a > a3 . The situation is analogous to the 
bifurcation of an equilibrium configuration in an elastic 
stability analysis. We expect that for 0 < a — a3 < < 1, AR 

and AL are, very small. Equation (11) can be linearized and we 
obtain, to leading order, an homogeneous system that admits 
a nontrivial solution only when a = a3. In analogy with the 
classical theory of elastic stability, we expect here a square 
root behavior at the branching point. Assuming that both AR 

and AL can be expanded in power series of (a — a3)1 /2 we 
obtain, after some algebra, the following asymptotic solution: 

A f i ~ 1 . 6 5 ( a - « 3 ) 1 / 2 - 1 . 7 1 ( a - a 3 ) 

- 1 . 0 1 ( a - a 3 ) 3 / 2 + 0 [ ( a - a 3 ) 2 ] 

AL ~ 1 . 6 5 ( a - a 3 ) 1 / 2 + 1.71(a-a3) 

- 1 . 0 1 ( a - a 3 ) 3 / 2 + 0 [ ( a - a 3 ) 2 ] (12) 

Since a4 - a3 = 0.03 this asymptotic series should be good 
enough for all a3 < a < a4 . A check of this is provided by 
the following fact: for a = a4 , AR = tx-i = 0.273rdand AL 

= i—t0 s 0.3566 rd. The asymptotic values of AR and AL 

are, respectively, 0.2404 rd and 0.3570 rd. Figure 4 displays 
the stable roots of equation (11). 

Summary 

The threshold values of a are «! = 1.0; a2 = (1 + ir2)1/4 

= 1.82; a3 = (4 + TT2)1/4 = 1.93; c*4 s 1,95; as = 2.15; a6 

= (1 + 4TT2)1/4 S 2.52. Remember that 12 = a • /31/2 . For 0 
< a < «[ , the cable is always fastened and y(t) = y/(t) = 
sin t. For ax <a < a2, the steady state is periodic with 
period 2TT (frequency u>). A typical solution is indicated by 
Fig. 2, where /0(a) is given by equation (4), and At0(a) is the 
solution to equation (6). For a2 < a < a4 the solution is 
quasi-periodic. As ?-*<», it approaches a limiting solution 
given by equation (10), where tL = i— AL; iR = t + AR and t 
is given by equation (9). For a2 < a < a}, AR = AL = 0 , and 
fora3 < a < a4 , AR and AL are given by equation (12). In 
the range a2 < a < a3 , the limiting solution has period 27r. 
For a3 < a < a4 , it has period 47r (frequency a>/2). Two 
features of this "quasi-periodic" solution are worth men
tioning. First, in the range a2 < a < a4 once the cable 
becomes loose it remains so forever, exception made to a 
discrete set of values ( t k } . At these points the cable becomes 
instantaneously fastened, the mass picks up the davit's 
velocity, and the cable becomes loose again. A second feature 
is that the rate of convergence, toward the limiting state 
decreases as a becomes closer to a3 . For a4 < a < a5 the 
motion is periodic with period 4ir and has the structure shown 
in Fig. 3. The values of t0 and At0 are determined as indicated 
in the foregoing and/j = t0 + At0. Ati is the root of equation 
(7) with t = t\. As a increases, point B tends toward B5. For 
a5 < a < a6 the solution is periodic with period 4ir, and has the 
structure shown by curve (c), Fig. 2. 

For a > a6 s 2.52 the behavior is very much the same as 
the one indicated so far. The response must keep changing its 
basic period from Ait to 6ir (frequency from co/2 to co/3) and 
so on. Values of a greater than a6 are, however, unrealistic 
for an offshore pipeline. We close this summary with the 
following observation: most of the results were derived under 
the assumption that |3 > > 1. By numerically computing the 
exact value of a2 we can state that for 13 > 20 the error due to 
the approximation is smaller than 0.55 percent. As we are 
going to see, working values of (3 are usually larger than 20. 

Typical Values for an Offshore Pipeline 

Due to the smallness of the wave amplitude A as compared 
with the suspended length L0, the pipeline works dynamically 
as if it were clamped at a point 0 (Fig. 1). If the pipeline were 
straight, a good approximation for the stiffness would be k = 
3EJ/L0*. If pTlg and pa/g are the density and buoyancy, per 
unit of length, of the pipeline then pe/g is the effective 
density, where pe = pT — pa. An important parameter is the 
so-called specific gravity, defined as the ratio pTlpa = 
pe/pa + 1. The weight of the suspended pipeline in the static 
configuration is peLQ and so re, the static tension, is of order 
T C « 0.5 (peL0), see [3]. In this way P = Te/kA0~L0/(6af 
A0), where af = EJ/peL0

3 and AQ =A\H(u) is the davit's 
vertical displacement. For a water depth around 40 m, the 
suspended length L0 is of order 150 m or even more and the 
nondimensional rigidity, <x2, of order 0.3 or even less, see [3]. 
The displacement A0 should not be much greater than 4 m (A 
= 2 m; H(u) =< 2) and so /3 is usually larger than 20. The 
approximation /3 > > 1 is then valid for an offshore pipeline. 
From equation (3), a2 = fi2//? « 2. (mo>2A0)/peL0 =2 
(moi2AH(w))/peL0. The mass m is given by m » 0.5 (pT/g) • 
L0[l + Cm(pa/pT)] whereCm>{palpT) is the effect of the 
added mass. If T = 2ir/u is the wave period then a2 = [1 + 
(1 + Cm) • (pa/pe)] • H(u>) > W~\ where W = gf-f^A 
depends only on the wave. Using the Pierson-Moskowitz 
spectrum to characterize the sea wave, we can easily check 
that Wis very much constant and roughly equal to 6.3, for 
wind speeds ranging from 10 to 50 knots, see [4]. A typical 
value for the added mass coefficient is Cm = 1 and the ratio 
pa/pe, between buoyancy and effective density, is usually of 
order 5 (specific gravity « 1,2). The transfer function H(<S) is 
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An example of this would be the behavior of the pipeline in a 
random sea. With respect to the result itself, it is to be em
phasized the peculiar way the system changes its frequency 
from co to co/2, where co is the input (wave) frequency. The 
existence of a region where the solution is "quasi-periodic" 
and the slowing down of the rate of convergence, toward the 
limiting (periodic) solution, as the input frequency ap
proaches the value where the transition takes place, where not 
anticipated beforehand. 
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in the range 1 to 2, depending on the position of the davit in 
the barge. The parameter a is then commonly larger than 1, 
indicating that in an actual offshore pipeline the cable can 
become loose. It is to be noticed that this is caused mainly by 
the effect of the added mass. 

We close this section with a further observation: the only 
pipeline parameter affecting the loosening of the cable is the 
specific gravity, represented by the term pa/pe in the ex
pression for a2. This is a curious result since one would expect 
that the rigidity EJ, the suspended length L0, and the static 
tension re would play a relevant part in this nonlinear 
problem. 

Conclusion 

A simplified dynamical model imitating an actual offshore 
pipeline has been analyzed. The importance of this study is 
two-fold. First, it offers a guideline that helps the analysis of 
the complex pipeline problem. Second, we can use the 
analytical solution to understand other complex questions. 
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Forced Nonlinear Oscillations of an 
Autoparametric System—Part 1: 
Periodic Responses 
Forced oscillations of a two degree-of-freedom autoparametric system are studied 
with moderately high excitations. The approximate results obtained by the method 
of harmonic balance are found to be satisfactory by comparing with those obtained 
by numerical integration. In the primary parametric instability zone, separate 
regions of stable and unstable harmonic solutions are obtained. In the regions of 
unstable harmonic solutions, depending on the forcing amplitude and frequency, 
the solutions may be amplitude modulated or completely nonperiodic. In the latter 
case the numerical integrations do not converge. 

1 Introduction 

A simple, nonlinear, two degree-of-freedom system giving 
rise to several interesting features is studied in this paper. One 
coordinate is directly excited by a harmonic force while the 
other is excited due to internal resonance. The system is 
termed an autoparametric system because the internal 
resonance occurs over a range of frequency. Similar systems 
with harmonic excitation were studied in [1, 2] with 
limitations on the excitation amplitude so that the responses 
remain harmonic. For moderately higher excitations the 
regions and nature of the nonharmonic solutions are studied 
in this work. 

The nonlinearities are introduced due to large oscillations 
of a pendulum which constitutes a part of the system. To the 
first-order approximation, the equations of motion have 
quadratic nonlinearities and these equations have been 
studied in detail [3, 4]. It was noted in [2] that for the system 
considered in this work, with moderately high excitations, the 
first-order approximation does not predict the true stability 
behavior of the steady state solutions. The necessary higher 
order approximations are carried out in the present work 
considering higher order nonlinear terms. For forced 
oscillations with harmonic inputs, the method of harmonic 
balance [5], being more straightforward, is used to study the 
nature and amplitudes of the responses. The steady state 
solutions are assumed to have only the first harmonic and 
these assumed solutions are shown to depict the behavior of 
the system with reasonable accuracy. 

The boundaries of parametric instabilities are obtained in 
the forcing amplitude-frequency plane. In the primary un-
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stable zone, two separate regions of unstable harmonic 
solutions and one region of stable harmonic solutions are 
obtained. In the regions of unstable harmonic solutions, 
numerical integrations are carried out to check the nature of 
responses. In one of these regions the numerical integrations 
do not converge and the detailed discussions on this region are 
taken up in Part 2 of this paper [6]. 

2 System Description and Equations of Motion 

Figure 1 shows the two degree-of-freedom system in which 
the primary consists of a linear spring-mass-damper system 
and the secondary system is a simple damped pendulum 

{//(//(////////// 

Fig. 1 Two degree-of-freedom autoparametric system 
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™ Boundary of primary instability 
— Boundary of secondary instability 
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Excitation frequency p 
Fig. 2 Parametric instability boundaries in F-p plane 

hinged to the primary mass M. The primary mass is excited 
directly by a harmonic force P0 cos oi t. The equations of 
motion are 

(M + m) x + c, x + fc, x - m 1 (0 sin 0 + 02 cos 0) 

= P0 COS Olt (1) 

and 

m l 2 0' + c2 0 + w 1 (g - x) sin 0 = 0, (2) 

where JC represents the displacement of M, 6 is the rotation of 
the pendulum, and the dot implies the derivative with respect 
to time, t. These equations are written in the nondimensional 
form as 

(1 + R)p2y" +2^pri' +v-p
2R(8" sind + 0 '2cos0) 

Fcos T (3) 

and 

p2 0" + 2 „ „ ^SidP a, 
y/l.+ R 

+ (jT-R-p2*")sine = o, 

where 

T=wf, r? = * / l , R = m/M, F = P0/kll, 

p = o>/Q1,Qi = *Jk^7M, q = w2/oi\, 

(4) 

oj) =slkx/M + m, w2 = Vg/1, fi = 
2 M 0 , ' 

r 2 = 
C2 

2 m l 2 u 2 

and the prime denotes the derivative with respect to the 
nondimensional time T. 

3 Boundaries of Parametric Instabilities 

For studying the boundaries of the regions of unstable zero 
solutions of 0 (when the sytem is oscillating at steady state as a 
locked mass), sin 0 is replaced by 0 in (4) rendering it to the 
following form: 

Here T\L is the locked mass response and is given by 

I\L = AL cos (T - </>„), (6) 

where 

F 
L V[l -p2(\ +R)]2+(2{lP)2 

and 

4>0 =tan" r 2 f i P ] 
Ll - p2(\ + R)\ 

(7) 

1 - p2(l + R) 

Equation (5) is transformed to the standard form of Mathieu 
equation [7] as 

d2\j, 

du2 + (a - 2/3cos2u) ^ = 0, (8) 

where 

and 

2U=T— 4>0 + ir 

i n ( 2f2<5rw \ 
V-=0exp I — 7 = = - ) 

V pVl + R > 

4?2(1 - f|) 

P 2 ( l +R) 
(3=2AL 

(9) 

(10) 

The boundaries of instabilities for (8) in the a — j3 plane 
can be determined directly from the standard tables [8]. Since 
the value of f2 is considered to be small, the boundaries for 0 
and \j/ are almost the same, except for very small i \(I t can be 
shown that with q = 1/2, F needs to be greater than 2 ft 
f2/Vl + R to cause instability of 6 = 0 in (5).) After ob
taining the instability boundaries for (8) the same are plotted 
for (5) in the F — p plane by using (10). These boundaries are 
shown in Fig. 2 v/ithR = 0.2, q = 1/2, f, = 0.02, and f2 = 
0.05, where u and 5 in Fig. 2 represent the unstable and stable 
regions, respectively. The primary unstable region is bounded 
by two periodic solutions of 4TT — one of them being odd (b\ ) 
and the other being even (a{). ax and b\ meet near/? = [(1 -
f |)/(l +R)]'A, i.e., a = 1. Similarly, the secondary unstable 
region is bounded by two solutions of period lit — the odd 
solution represented by b2 and the even solution by a2. ax and 
b2 have the same asymptote as /3 — oo. Similarly b3 (the odd 
solution for the third unstable region and not shown in Fig. 2) 
will have same asymptote as d2 for the range of d2 shown in 
the figure. This is because /3 is quite high and a is near 1 for 
this range. Thus the region inside d2 will include the third and 
higher regions of instability for which 0 = 0 is unstable. 

4 Approximate Solutions and Their Stability 

Because the excitation is harmonic, the steady state solution 
of the primary mass is also assumed to be harmonic with the 
same frequency u>. The solution being sought near the primary 
unstable region of (5) (i.e., q2/p2 (1 + R) »1/4) , the steady 
state motion of the pendulum is taken as harmonic with 
frequency u /2 . Thus the steady state solutions are assumed to 
be of the form 

ri =A COS(T + <j>i) 

and (ID 

0 =Bcos ( T + < ^ ) 

Substituting (11) into (3) and (4) and equating the coefficients 
of sine and cosine terms the following four equations, in 
terms of the four unknowns./!, B, <f>\, and 4>2, are obtained: 
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(y2 + v\)v, + v\ + 2 y 3 [ ( l - p 2 ( l +R)}vx 

+ (2 r, P ) «>2] = J * 

^42 = y? + y2. 

[1 - p2 (1 + 7?)] y2 - (2 r, P) w, 
tan 2 (/>2 = 

and 

[1 - p 2 ( l + i ? ) ] y i + ( 2 r i P ) y 2 + ^ 3 

tan (2 02 - 0,) = 

where 

y, = 

v? = 

_B_ _ <?2 

T ~ / 7 2 ( l + / ? ) 
2 7, (5) 

J, (5) - 73 (5) 

(12) 

(13) 

(14) 

(15) 

U. 

0) 
T3 
r> 

ex 
E 
o 
c: 
o 

•*— 

o 
•*— 
o 
X 

UJ 

2 pVl + i ? [ 7 , (£) + / 3 ( * ) ] ' 

y3 = ^ - ^ [2 l / i (5) - / 3 (fl)) + B [J0 (B) 

+ 2J2 (B) + J4 (B)}], 

v4 =[1 - P 2 d +R)]2 + (2 f , p ) 2 

and J„ {B) is the Bessel's coefficient of order n arising out of 
expansions of the terms like sin ( 5 C O S ( T / 2 + 02)) [9]. 

For the /th-order approximation, terms up to B(2i~l) are 
retained in (12)-(15). For first-order approximation the 
polynomial (12) can be solved in closed form. For any higher 
order approximation, this equation has to be solved only 
numerically. 

The stability of the assumed solutions is investigated by 
providing small perturbations to them as 

r) = A COS(T + 0 0 + yx 

and (16) 

e = B cos ( y + 02) + y2 

where j>! and y2 are small perturbations. Substitution of (16) 
in (3) and (4) yields 

(1 + R)P
2y'{ + 2 f, py[ + v, -p2R[fi (T) y'i 

+ f2(r)yi + / , (r)y2] = 0 

and (17) 

2 „ 2 r2 QP , ^ 
p y-i+ ,-.—^y* + Vl + R' 

+ / 4 ( r ) 
-1 + R 

-P2A(r)y" = o, 

y2 

where 

/ , (T) =sin [tfcos ( y + 0 2 )1 

f2 (T) = - 5 sin ( y + 0 2 j cos Ificos ( y + 02J 

/} (T) = - - COS (̂  y + 0 2 j COS I 5 COS ( y + 02J 

- y sin2 ( y + 0 2 j sin |^3cos ( y + <A2)J 

0.15 

0.10 

0.05 

Q 
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Fig. 3 Boundaries of stable and unstable harmonic solutions 

3 

CD 

1 2 

Q. 

e 
o 

3 
C 

— Integrated results 
a , o Approximate results 

0.6 0.7 0.8 0.9 

Excitation frequency p 
Fig. 4 Amplitude of pendulum obtained by approximate method and 
integration 

h (T) 1 + R 
+ p2ACOS(T + 0 0 x 

cos B cos ( — + 0 2 ) 

and 

Equations (17) are linear equations with periodic coef
ficients. Floquet's theory [4] is used to investigate the stability 
of these equations. 

5 Results and Discussions 

Numerical results are presented for the following values of 
the parameters: R = 0.2, q = 1/2, ft = 0.02, and f2 = 0.05. 
The range of excitation frequency is around the natural 
frequency of the locked mass system, i.e., p-Jl+R « l .The 
approximate solutions are obtained by considering terms up 
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Fig. 6 Response time histories of 0 with two different set of initial 
conditions: F = 0.06, p = 0.88; ; ij (0) = 0.08, ij' (0) = 0.06, fl (0) = 
1.24, $' (0) = 0.07; : v (0) = - 0.03, i)' (0) = 0.05, 6 (0) = 1.25, 6' (0) = 
-0 .03 

to B5 in (12)-(14). Further inclusion of higher order nonlinear 
terms does not change the results significantly. The integrated 
results presented are by Gill's modification of the fourth-
order Runge-Kutta method. 

5.1 Boundaries of Stable and Unstable Harmonic 
Solutions. Figure 3 shows the enlarged view of boundaries 
of the primary instability, already given in Fig. 2, for F up to 
0.15. Because of dampings f, and f2 the primary instability 
boundary starts from a nonzero value of F ( » 0.0018). The 
boundary of the primary instability is shown by the firm lines 
a, and b\, inside which 0 = 0 is unstable. Region /includes 
combinations of F and p for which the harmonic solutions, 
given by (11), are stable. For the values of F a n d p in regions 
II and III, all the harmonic solutions, given by (11), are 
unstable. The number of such unstable harmonic solutions 
can be more than one. 

The areas between the firm line and the chain dotted lines 
show the overhang regions where the zero solution of 6 is a 
stable solution. The nonzero solution of 6 (i.e., the solutions 
(11)) in the overhang regions may or may not be stable 
depending on whether or not the representative point (F, p) 
lies in region / . The integrated results show that at F = 0.09 
region 7/ widens sharply toward the left and touches the 
boundary of the left overhang. For F > 0.09, the left 
overhang almost disappears for integrated results, whereas 
approximate results yield a small overhang. Thus, except in a 
narrow region in the left overhang, the results obtained by 
integration and the approximate method match very well. 

5.2 Stable Harmonic Solutions in Region / . The am
plitudes of 6 and i\ are shown in Figs. 4 and 5, respectively, 
where both the integrated and the approximate results are 
illustrated. For the integrated results, when the responses are 
seen to be periodic (with iy and 6 having periods of 2-w and A-w, 
respectively), the maximum value in one cycle is taken as the 
amplitude. For representative points in region / (Fig. 3) the 
integrated responses reach harmonic or near harmonic steady 
states. These steady state amplitudes are joined by firm lines 
in Figs. 4 and 5. The dotted lines in these figures do not 
represent the amplitudes but are only the extrapolations of the 
respective firm lines. These dotted lines are for combinations 
of F and p lying in region 77 of Fig. 3 when the integrated 

responses do not have fundamental period of ij and 8 as 2TT 
and 47r, respectively. Similarly no amplitudes are shown for F 
and p in region III as the solutions (11) are unstable and in
tegration also does not yield periodic responses. Figure.4 
shows that the amplitudes of 6 obtained by the approximate 
method and numerical integration are in very close 
agreement. At lower values of p, however, these two methods 
yield somewhat different values for the amplitudes of r/. This 
is due to the presence of higher harmonics in the response of ij 
for lower values of p, as shown by the Fourier analysis of the 
steady state integrated responses, whereas 6 remains almost 
harmonic. Approximate results can also be refined by con
sidering higher harmonics in (11). But this changes results 
only quantitatively and that too, not very significantly. It is 
seen from Figs. 4 and 5 that the amplitudes increase sharply at 
certain frequencies. In fact, these are the frequencies at which 
region / / / (Fig. 3) is approached. On the other hand, as region 
/ / is entered while decreasing p, the amplitudes A and B 
decrease. Similarly, for phase angles as well, it is seen [10] 
that the transition to region / / is smooth, whereas the tran
sition to region / / / occurs with a jump in the values. 

With the combinations of F and p lying well inside region / 
the harmonic solutions are strongly stable. As the 
representative point approaches region / / or / / / , while 
checking the stability of (17) the eigenvalues approach unity 
and the solutions become weakly stable. For example, with F 
= 0.06 and p = 0.88 the representative point is in region / 
and very close to region / / . Figure 6 shows the integrated 
steady state response time histories of 6 with two different, 
but close, initial conditions. The response represented by 
dotted line is harmonic with a period of 47r, whereas, the firm 
lined response has small modulation with a period of 127T. 
Both of these responses represent stable steady state, each 
being achievable only from a particular set of initial con
ditions. The 4Tr-period response can be approximately ob
tained by (11) and the amplitude of 6 thus obtained is 1.24. 

5.3 Integrated Response in Regions / / and / / / . While 
checking the stability of (17), for moderate values of F such 
that (F, p) point lies in region / / , the eigenvalues are complex 
and slightly greater than unity. This suggests that the growth 
of the trivial solution of (17) will be slow and oscillatory. 
Therefore, with initial conditions calculated from (11) with r 
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Fig. 7 Response time histories of 0' with two different set of initial 
conditions: F = 0.08, p = 0.86; : i, (0) = 0.13, i j ' (0) = 0.06, S(0) = 
1.44, 0'(0) = -0.01; :,(0) = 0.91, V(0) = 0.94,9(0) = 1.32, 0' (0) 
= -1.30 

= 0 the numerical integration is expected to give a steady state 
that will be close to the harmonic state given by the ap
proximate solution. Further, these steady states are expected 
to be influenced strongly by the initial conditions. Figure 7 
shows the steady state response time histories of 6' with F = 
0.08 and/? = 0.86 with two different initial conditions. The 
firm lined response is obtained with initial conditions from 
the approximate solution and has a modulation of period 207r. 
The dotted line has a period of 2TT and the mean value of d' is 
nonzero. This implies that during the steady state the pen
dulum keeps on rotating in the same direction, the time taken 
for each rotation being 27r. 

As the excitation amplitude is increased in region II, the 
modulation of the response becomes more irregular as is 
evident from Figs. 6 and 7. Moreover, there is no fixed 
pattern of the amplitude modulation. For a particular 
combination of F andp, depending on initial conditions, it is 
observed [10] that there may be more than one amplitude 
modulated steady states and these states are weakly stable. If 
the initial conditions are sufficiently far away from these 
periodic trajectories, the integrated responses become 
irregular and nonperiodic. For sufficiently large F in region II 
the maximum eigenvalue becomes appreciably greater than 
unity and the integrated responses become nonperiodic with 
any choice of initial conditions. 

For points in region 7/7, the maximum eigenvalues are 
found to be real and much greater than unity. This implies 
that no stable harmonic or near harmonic steady state exists in 
the neighborhood of the solutions obtained by the ap
proximate method. In such cases, for any choice of initial 
conditions, the integrated responses are seen to be non-
periodic. In other words, even after a long time, when the 
effects of the transients are expected to die down due to the 
presence of significant damping, the responses do not show 
any periodicity and are quite irregular. Moreover, by 
decreasing the step size of integration, the results do not 
converge uniformly to a common limit for all T. In such cases 
it is observed that a change, even in the eighth decimal place, 
in the initial conditions change the response history com

pletely. Similar nonconvergent results are also obtained by 
Hamming's modified predictor-corrector method. In com
parison, for region I, where the harmonic steady states are 
strongly stable, even a coarse step size of integration with any 
initial condition carries the solution to the same periodic 
steady state. 

For (F, p) in region I but close to region III, the harmonic 
steady states can be obtained by selecting initial conditions 
properly. But these steady states are weakly stable and a small 
disturbance to these or a slightly different initial condition 
(than mentioned in the foregoing) carries the solution to a 
completely nonperiodic state. Further discussions on the 
region III are taken up in Part 2 of this paper [6]. 

6 Conclusions 

For the forced system with harmonic excitation, the method 
of harmonic balance correctly predicts the existence or ab
sence of stable harmonic or near harmonic solutions, as also 
verified by numerical integrations. With increasing values of 
the excitation amplitude, the steady state response cease to be 
harmonic in certain frequency ranges. It was shown in [2] that 
for the system with a spring-controlled pendulum, the 
deviation from the harmonic solution was associated with a 
jump in the amplitude values. For the system with a gravity-
controlled pendulum, two separate regions of unstable 
harmonic solutions are obtained. As the frequency decreases, 
the transition from the region of stable harmonic solutions to 
one of these regions takes place without any jump and is 
associated with a decrease in the amplitudes. Moreover, in 
this region, depending on the initial conditions, one or more 
amplitude modulated steady states are possible. These 
modulated states are weakly stable and nonperiodic states 
may result if sufficiently large disturbances are introduced. 

Transition to the second region of unstable harmonic 
solutions is associated with a sharp increase in the amplitudes 
and in these regions no periodic solutions exist. In such cases, 
given a set of initial conditions, the response at a future in
stant of time can not be determined uniquely. Lastly, with 
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increase in forcing amplitudes the overhangs almost disap
pear. 
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1 Introduction 
An interesting feature of some nonlinear systems is their 

capability of yielding random-looking (chaotic) responses to a 
deterministic input even in the presence of damping. Although 
this phenomenon has been observed in different disciplines, 
there is no unified approach to the problem. May [1] has 
reviewed some systems governed by difference equations 
which give rise to chaotic oscillations. Lorenz [2] stated that 
for systems with bounded solutions the nonperiodic solutions 
are ordinarily unstable with respect to small modifications. 
This in turn signifies that slightly different initial states can 
evolve into considerable different states. Holmes [3] studied 
in detail a nonlinear oscillator for which chaotic motions 
arise. As a mechanical example Moon and Holmes [4] and 
Moon [5] examined the forced vibrations of a cantilever beam 
buckled by magnetic forces. The basic unforced system in 
[3-5] had two stable static equilibrium positions. For the 
critical forcing amplitude and frequencies the motion is 
chaotic with the beam tip jumping from one fixed point to the 
other. The present work shows a possibility of chaotic 
motions with a two degree-of-freedom system where one of 
the coordinates is parametrically excited and the unforced 
system has only one stable static equilibrium position. 

The system under consideration and its equations of motion 
were described in Part 1 of this paper [6].' It was shown there 
that in the forcing amplitude-frequency plane there is a region 
where the harmonic solutions are unstable and with successive 
approximations the numerical integrations do not converge 
uniformly (for all time) to a common limit. Thus, though the 
large disturbances die out due to dampings and the responses 
remain bounded, it is not possible to describe these responses 
uniquely. The approximate methods obviously fail in this 

Forced Nonlinear Oscillations of an 
Autoparametric System— 
Part 2-.Chaotic Responses 
Chaotic oscillations arising in forced oscillations of a two degree-of-freedom 
autoparametric system are studied. Statistical analysis of the numerically integrated 
nonperiodic responses is shown to be a meaningful description of the mean square 
values and the frequency contents of the responses. Some qualitative experimental 
results are presented to substantiate the necessity of performing the statistical 
analysis of the responses even though the system and the input are deterministic. 

The nomenclature is employed in both parts 1 [6] and 2. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
Applied Mechanics Division, March, 1982; final revision, January, 1983. 

chaotic regime. We propose to show in this work that for 
these chaotic responses a meaningful description (and 
possibly the only) is possible through statistical analyses and 
further that the statistics can be inferred from a single in
tegrated response record (even though the integrations do not 
converge.) Lastly, some qualitative experimental results are 
presented to substantiate the necessity of performing the 
statistical analysis of the responses even though the system 
and the input are deterministic. 

All the discussions in this paper are for the combinations of 
F and p lying in region / / / (Fig. 3 [6]), which is also referred to 
as the chaotic regime. 

2 Integrated Responses in the Chaotic Regime 
It was mentioned in [6] that for combinations of F and p in 

region / / / (Fig. 3 [6]) the integrated responses are nonperiodic 
and these responses depend on the step size of integration, h, 
and the initial conditions. With F=0.05 and p = 1.0, Fig. 1 
shows typical time histories of 6' for two different step sizes 
with the same initial conditions. For the case with h = TT/40, 
rj-response record is shown in Fig. 2. Since ij coordinate is 
directly driven by the external harmonic excitation, its 
response is expected to have more regularity as compared to 
that for 6 and this is evident from Fig. 2 as well. 

The results presented in Figs. 1 and 2 as such do not convey 
any meaning since these results have not converged, as was 
mentioned in [6]. The numerical integrations are affected by 
the numerical roundups and the inherent errors in the 
numerical schemes used. Likewise any actual physical ex
periment will have unaccountable disturbances. The cojritrol 
on the parameter values during the numerical integration, in 
fact, is much better than in any physical experiment where the 
parameters, like frequency etc., do not remain exactly at the 
predetermined value. 

For (F, p) lying well inside region /(Fig. 3 [6]) the harmonic 
solutions are strongly stable, the integrations with any initial 
conditons yield the same harmonic steady state, and therefore 
an experiment producing identical results (within the limits of 
experimental error) can be repeated many times and the 
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h=TT/40 h=w/80 

2.8 r / lOOn 

Fig. 1 Response time histories of $' with different step sizes of in
tegration: F = 0.05, p = 1.0, 0(0) = 0.05, 9(0) = ij(0) = i,'(0) = 0 

h = Tf/40 

^ r/IOOir 

- 0 . 8 -

Fig. 2 
= i(0) 

Response time history of ij: F 
= ,'(0) = 0 

0.05, p = 1.0,8(0) = 0.05, #'(0) 

responses are deterministic. On the other hand, for the 
parameter values within or very close to region / / / (Fig. 3[6]), 
the experimental results cannot be reproduced because of the 
inherent disturbances that change the responses drastically. 
These disturbances can only be considered random and the 
nonperidoic solutions are unstable with respect to these 
disturbances. So it is impossible to predict the exact value of 
the response at a future instant of time though the large 

disturbances die down and the responses remain bounded, t" 
Hence the only meaningful description of the integrated 
response time histories can be attempted by treating these as 
sample records of a random process. 

The following statistical analysis is done for the sample 
records of 6', instead of 9. This is to avoid confusion as the 
pendulum is found to make some complete revolutions in 
either direction without any fixed pattern. 

Nomenclature 

C l , C 2 

F 
G 
h 
I 

* i 

/ 
M 
m 
N 
P 

P = 

R 
R 

damping coefficients 
nondimensional amplitude of the exciting force 
smoothened power spectral density function 
step size of integration 
mass moment of intertia of the compound pen
dulum 
spring stiffness 
effective length of the pendulum 
mass of the primary 
mass of the pendulum 
number of data points in the sample record 
forcing frequency nondimensionalized with respect 
to the natural frequency of the primary mass 
forcing frequency nondimensionalized with respect 
to the natural frequency of the locked mass 
ratio of natural frequencies of the pendulum and 
the locked mass 
mass ratio = mIM 
normalized autocorrelation function 

r 
s 
t 

X 

y 
Y 
Y 

f i 
fi 

r2 
n 

T 

lag number 
maximum lag number 
time 
displacement of the primary mass 
displacement of the base of primary mass 
amplitude of the base displacement 
nondimensional amplitude of the base dis
placement 
damping ratio of the primary mass 
damping ratio of the locked mass 
damping ratio of the pendulum 
nondimensional displacement of the primary mass 
angular displacement of the pendulum 
nondimensional angular velocity of the pendulum 
nondimensional time = ut 
forcing frequency 
10/'/5,y = 0, 1, 2, ,s = discrete frequencies at 
which PSD functions are evaluated 
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N = 4 0 0 0 

s = 4 0 0 

r / 1 0 0 

Fig. 3 Autocorrelation function for i; and 6': F 
0.05, h = T/40 

0.05, p = 1.0,9(0) = 

II8 

I I6 

6 0 

5 8 - ^ N = IOOO,s = IOO a N = 2 0 0 0 , s = IOO 

D N = 2 0 0 0 , s = 2 0 0 & N = l 0 0 0 , s = 200 

o N = 4 0 0 0 , s = 4 0 0 a N = 2000, D 
s * 4 0 0 

3 0 -

<CP 

2 0 

• N = 8 0 0 0 , s = 8 0 0 

9 A 

D 

A 0 

Q 

• O 

O • 
' . ^ 

x9-
I/4 I/2 3/4 

U) 
Fig. 4 PSD function for i; with different record lengths: F = 0.05, p 
1.0,9(0) = 0.05, h = TT/40 

3 Statistical Analysis of the Response Time Histories 
It was mentioned earlier that the responses depend on the 

initial conditions and the step size of integration. It is assumed 
now that with other parameters remaining the same, the 
integrated response record, for each combination of h and the 
initial conditions, is a sample record from the same random 
process. Thus different sample records are obtained by 
changing h and/or the initial conditions and the statistical 
quantities are shown to be independent of these parameters. 

It is further checked whether these sample records can be 
treated as the realizations of a weakly ergodic process; in 

a> 

20 

10 

r\ 

^ N = l 000 ,s= l00 a N = 2 0 0 0 , s =100 

0 N = 2 0 0 0 , s = 2 0 0 a N = IOOO,s = 2 0 0 

o N = 4 0 0 0 , s = 4 0 0 

s N = 8 0 0 0 , s = 8 0 0 

® ® N = 2 0 0 0 , s = 4 0 0 
, ® 

o ® oo ® 
' • o i . 

' g V eSsS0® 
0 A 

8 • 0 
i 

°90o«I° 
X H - o 0 

1/4 1/2 3/4 

Fig. 5 PSD function for 0' with different record lengths: F = 0.05, p : 
1.0,9(0) = 0.05, h = TT/40 

30 

20 
f=-

<C3 

9(0)=0.05,h=rgQ curve coincides with 

9(0) = 0 . 0 5 , h = TT/40 

9(0) =0 .05 , h = TT/80 / ^ 

9(0) =0.10, h = TT/40 / ^ \ 

9(0) =0.50, h = TT/40 / \ \ 
6 Y 

//I 

1 ^ 1 

\ 
\ 

1/4 1/2 3 / 4 

W 
Fig. 6 
sizes: F 

PSD function for >; with different initial conditions and step 
= 0.05, p = 1.0 
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rr/160 
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Fig. 7 PSD function for B' with different initial conditions and step 
sizes: F = 0.05 

Fig. 9 Sectional views of the experimental model 

• y 

Fig. 8 Mathematical model of the experimental system 

other words, if these can be considered to be stationary. By 
this it is meant that, except for the variations due to normal 
statistical sampling, the properties computed over short time 
intervals do not vary significantly from one interval to the 
next. The stationarity of the random process is tested by 
considering a single record and computing the mean square 
values over contiguous short time intervals and performing 
the "run test" [7]. These run tests are performed for various 
combinations of parameters and the hypothesis of stationarity 
is found to be acceptable with 0.05 level of significance [8], 

3.1 Results and Discussions. The results are presented for 
R = 0.2, q = 1/2, f, = 0.02, and f2 = 0.05. The parameters 
varied are F, p, h, and 0(0). The initial conditions for other 
coordinates are taken as zero. The data points are taken at 
interval equal to ir/10. 

Figure 3 shows the typical autocorrelograms for i\ and 0', 
respectively. Figures 4 and 5 reveal that different values of N 
and s give the same trend for power spectral density functions 
(PSD), where G represents the smoothened PSD estimate at s 
+ 1 discrete frequencies « [7]. Due to the presence of a 
periodic component at co = 1.0 the peak of G, increases 

almost proportionately with the increase in the record lengths. 
Figures 6 and 7 show that with F = 0.05, p = 1.0 the different 
combinations of 0(0) and h (i.e., the independent realizations) 
yield the same trend of PSD's implying that all the 
realizations are from the same random process. The variances 
are also observed to be almost the same for different com
binations of h and 0(0) [8]. Thus, though the integrations do 
not converge with decreasing step sizes and also the response 
histories depend on the initial conditions, these differently 
appearing response histories are sample records from the 
same ergodic process. 

Figure 3 suggests that the sample record of 0' behaves like 
that of a wide band random process, whereas, the record of r\ 
has a strong periodic trend. However, as Ri) falls below 0.5 
for r > 20, the data cannot be considered as deterministic. 
Figures 4 and 6 show a high content at co = 1.0 (i.e., at the 
forcing frequency). Figures 5 and 7 indicate low frequency 
contents for 0'-response. Atp = 1.0, no periodic component 
is present in 0' -response and consequently no peak is observed 
at co = 1/2. Atp = 1.05, 0'-response has a periodic com
ponent at co = 1/2 besides having low frequency contents due 
to randomness of the motion. 

4 Experimental Model 
Figures 8 and 9 show the mathematical and experimental 

models, respectively. In Fig. 9, a is the primary mass sup
ported on the linear spring b. Fixed to the base B is the outside 
guide block c. The primary mass oscillates freely within this 
block on strip ball bearings d. On two adjacent faces of the 
primary mass, the strip bearings are pressed from sides by 
adjusting plates g{ and g2. The screws S are set with an op
timum pressure, obtained by trial and error, to ensure free 
movement of the primary mass. The compound pendulum e is 
hinged to the shaft / which in turn is fixed to the primary 
mass. Inertia of the compund pendulum is /and the dampings 
are idealized as viscous type. 

In the nondimensional form the equations of motion for 
this system are 

P2n" +2tiPn' +V=P2 

\+R 
(0" sin0 + 0'2cos0) 

and 

= yVl+(2f,^p cos 

p26" +2£2p qd' + {q2 -p2r,") sin 0 = 0 

(1) 

(2) 
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Fig. 10 Response record of the primary at p = 0.8: (a) locked mass 
response xL ((); (b) primary response x(t) with pendulum oscillating 
harmonically 

I SEC 

I SEC 

Fig. 11 Primary response x(t) with pendulum oscillating randomly: p 
= 0.97 

where 

C O , : 
M+m 

m\2 

f~ ml2+I' 
o>2 =%//<• ( g / 1 ) , 

R = m/M, f,= 
2co! (M+/n) ' r2 = 

c2 

2co 2 (ml 2 +/ ) 

CO co2 . / x \ -, _ / Y\ 

Oil 

f=cor+tan_ 1(2 ft p) and y=Yzosu>t 

is the base displacement. 
For f, < < 1 and p » 1 equations (1) and (2) have similar 

characteristics as those of equations (3) and (4) in reference 
[6]. 

The experimental model is mounted on the table of a 
mechanical vibrator. The table provides a harmonic 
displacement, independent of the load acting on it. Ex
periments are conducted to verify the existence of parameters 
for which, with a certain amplitude of the base excitation, the 
pendulum, at different frequencies, exhibit the following 
different motions when disturbed from its static equilibrium 
postion: The pendulum (J) returns to it, (ii) reaches a har
monic steady state, or (Hi) oscillates randomly even after a 

long time. Measurement of either the displacement or the 
velocity of the pendulum is quite complicated. Since the 
quantitative results are not aimed at, the pendulum motion is 
not measured. Instead the pendulum motion is observed only 
visually and the response of the primary is recorded. The 
details of the experimental procedure are reported in reference 
[8]. 

4.1 Experimental Results. For the experimental model the 
values of the parameters are 1 = 1.53 cm, If = 0.356, ft = 
0.044, ft, = 0.005, R = 0.305, q = 0.375, andp = 1/6.4 T, 
where 71s the time period of the base excitation in seconds. 

With Y = 0.132 cm (Y = 0.031) random responses of the 
primary and the pendulum are observed over a certain 
frequency range. At low frequencies the static equilibrium 
position of the pendulum is a stable one and the system 
oscillates like a locked mass. As the frequency is increased to 
p = 0.8, the static equilibrium position of the pendulum 
becomes unstable. When the pendulum is not disturbed from 
its equilibrium position, the steady state locked mass response 
history, xL (t), is shown in Fig. 10. The non-
dimensional primary amplitude in this case is 0.083 and 0.084 
from experimental and theoretical results, respectively. The 
pendulum, when disturbed slightly, reaches a harmonic steady 
state and the primary response, x (t), in this case, is also 
shown in Fig. 10. The nondimensional primary amplitude 
obtained from the experiment, is 0.055, whereas, numerical 
integration yields a stable harmonic steady state as t\ = 0.076 
cos (f - 8.6), 6 = 0.45 cos (f/2 - 2.5). 

At p = 0.97, if the pendulum is disturbed slightly the 
subsequent pendulum motion does not show any regular 
pattern even after a long time. It oscillates irregularly for 
some time and then makes few revolutions. The number and 
the direction of revolution also do not show any patttern. 
Consequently the response of the primary ceases to be 
periodic. The experiment is repeated at the same frequency by 
stopping the pendulum and then again letting it oscillate. 
After a lapse of sufficient time, when the transients are ex
pected to die down, the response x (t) is recorded. Three such 
records at the same frequency (p = 0.97) are shown in Fig. 11. 
The records, though having some regularity, are not periodic. 
This regularity is because the primary is directly driven by the 
harmonic base excitation. The pendulum motion is observed 
to be much more irregular and appears to be random in 
nature. At this excitation frequency the numerical in
tegrations (0(0) = 0.05, T/(0) = T/'(0) = 0'(O) = 0, h = TT/40, 
TT/80 and 7T/60) also do not converge. 

For p > 1.1 the static equilibrium position of the pendulum 
is again a stable one. 

5 Conclusions 

For the two degree-of-freedom autoparametric system 
considered, it is shown that for certain combinations of 
forcing amplitude and frequency the responses become 
random. Existence of chaotic motion is also verified ex
perimentally. In these cases the numerical integration do not 
converge; the integrated results can, however, be used to 
obtain the mean square values and the frequency content of 
the response. This is achieved by considering the integrated 
response history as a sample record which is shown to be 
stationary. The statistical quantities are shown to be in
dependent of the initial conditions and the step size. The 
statistical quantities, of course, depend on the values of the 
system parameters like F and p. The primary mass, being 
excited directly, has a response with a strong periodic com
ponent at the forcing frequency. The pendulum response has a 
wider spectrum and it may or may not have a periodic 
component at half the forcing frequency. 
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Control of Reflector Vibrations in 
Large Spaceborne Antennas by 
Means of Movable Dampers 
A simple approach to the design of feedback controls for damping the vibrations in 
large spaceborne antennas with flexible dish reflectors is proposed. The feedback 
controls consist of movable velocity-feedback dampers whose positions are 
determined by minimizing the rate of change of total vibrational energy at any time. 
The performance of the proposed feedback controls is studied via computer 
simulations. 

1 Introduction 

In the design of deployable spaceborne antennas with large 
flexible dish-reflectors, it is of importance to damp out the 
reflector vibrations induced by external disturbances and/or 
spacecraft motions as quickly as possible so that the antenna 
performance will not be degraded. It has been proposed that 
active feedback controls be used to damp out the vibrations 
[1-3]. Unfortunately, such controls are not readily im-
plementable due to their complexity. Moreover, the 
simultaneous actuation of controls may induce unbalanced 
forces and moments on the spacecraft, and serious problems 
may arise if the control system malfunctions. To damp out the 
dish vibrations, it is desirable to dissipate the dish's 
vibrational energy as quickly as possible. Ideally, the dish 
should be made of light-weight rigid material having large 
internal structural damping so that, in effect, we have a 
spatially distributed damper. Lacking such material, it is of 
interest to design simple reliable control systems for damping 
the dish vibrations. 

In this paper, we propose to use feedback controls con
sisting of movable dampers whose positions are determined 
by minimizing the rate of change of total vibrational energy at 
any time. We begin with the introduction of the basic 
mathematical model for dish vibrations. Then, various forms 
of movable dampers are discussed. Their performance is 
studied using computer-simulated models. 

2 Mathematical Model 

Consider a circular dish whose vibratory motions about a 
given static equilibrium configuration (for example, a 
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parabolic cross-sectional profile) is describable by the 
following wave equation: 

pw„ = V'(TV w)+f (1) 

defined on the spatial domain fi = ((r, 8): 0 s 8 .< 2TT, 0 < 
/•,„ < r < r01 as shown in Fig. 1, where w is the displacement 
about the static equilibrium; p = p(r, 8) is the mass density; T 
= T(r, 8) is the tension, and/corresponds to the control or a 
damping force. The lettered subscripts denote partial dif
ferentiation. In polar coordinates, equation (1) has the ex
plicit form: 

pwt/=(Twr)r + Tr-,wr+r-l(r~,Twe)e+f. (2) 

Assuming that the dish is clamped at the inner and outer 
rims, the boundary conditions are 

w(t,r0,8) = w(t,ril, = 0 forall/andO<0<27r. (3) 

In addition to (3), we have the periodicity requirement: 

w=0 
Fig. 1 Spatial domain of the dish reflector 
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w(t,r,0) = w(t,r,2ir) for rin <r<r0. (4) 

Let v = w, and 0 = 0 U dfi, where dQ is the boundary of Q. 
We assume that p and T are given real-valued positive con
tinuous functions defined on 0. Moreover, T is continuously 
differentiable on Q. Equations (1) or (2) can be rewritten in 
the form of an evolution equation: 

d 

It 
' w(/,«)" 

_ «('••) _ 
= A 

~ W(t,')~ 

_ v(t,*) _ 
+ 

0 " 

_ / ( ' , • )_ 

with 

A = 
0 I 

.p-'V'(rv) oj 

(5) 

(6) 

defined on a suitable state space E. 
Let Hm(Q) denote the real Sobolev space of integral order 

m > 0 defined by Hm($) = {«(•): II"^"pi) < °°) > where 
llull///n((I) is the norm induced by the inner product: 

(7) 

where a = (a j , a2) is a vector with non-negative integral 
components; lal =a1 +a2 and DMu = d l a iM/d*i a ix 2

2 , x 
= (x^, x2) €fi. The completion of 

CO 

C0(fl)=fVS(fl) in//m(Ji) 
*=o 

is denoted by H'Q(Q), where C§(Q) is the set of all real-valued 
functions vanishing on the boundary dQ and having con
tinuous partial derivatives up to order k in fi. Let 3C, and 3C2 

denote the spaces //J(Q) e H°(Q) and (/^(Q) n//J(Q)) © //£(«), 
respectively, with their inner products given by 

< ( W 1 , U I ) , ( W 2 , U 2 ) > 3 - J , (TVWi1 Vw 2+ /of 1«i i2)^ . (8«) 

<(wi,fi),(w2,i;2)>K2 =<w1,w2>w2(!)) + <yi,y2> / /i (n). (86) 

For the undamped system (f = 0), we may take the state space 
E = 3C j and Z3 (A) (the domain of A) as JC2. In this case, it is 
well known [4-6] that A generates a strongly continuous 
group on E, or (5) and (6) define a dynamical system on E. 
Moreover, the inner product (8a) induces an "energy norm" 
ll(w,f)li3Cl = V<(w,i;),(vv,!;)>3Cl which is well defined along 
each system trajectory. In what follows, we will consider 
various simple physically implementable feedback controls of 
the fo rm/ = B(t) v such that the resulting operator 

A ( 0 = A + 
0 0 

0 B(t) 

with domainD( A(t)) = 3C2 for all t > 0 generates a strongly 
continuous semigroup on E = 3Ct. Furthermore, the resulting 
dynamical system is dissipative in the sense that the energy 
II (w(t), v(0) Mac /2 along each trajectory decays to zero as 
t-oo. 

3 Feedback Controls 

First, consider the total energy of the system at any time 
given by 

8 ( 0 = 1 1 ( ^ ) 1 1 ^ / 2 = M [p\w,\2 + T\Vw\2]dQ 

= r ( ' P [p\w,\2 + T( \wr\
2+ \r-xwe\

2))rdrde. 
2 J 0 J r,„ 

Using (2)-(4) and integration by parts, it can be readily 
verified that the time rate of change of total energy is simply 

S ( 0 = ( T° f(t,r,6)wt(t,r,d)rdrde. (10)) 
J 0 J rin 

A possible approach to vibration damping is to choose the 
control or damping force / in a given admissible class such 
that d&(t)/dt is minimized [7-8]. Consequently, the 
vibrational energy 8 ( 0 is reduced as quickly as possible. A 
simple choice for / is a spatially distributed feedback control 
in the form of a linear damping force given by 

f(t,r,d)=-g(t,r,e)wt(t,r,e), (11) 

where g is a non-negative damping coefficient. Assuming that 
g is a piecewise continuous function defined for all (t, r, 9) 
€Q = [0, oo] x 0, and g(t, r, 6) > 0 almost everywhere in Q, 
it can be verified (following [6] with minor modifications) that 
the operator 

0 0 
A ( 0 = A + 

0 -g(t,r,6)I 

with domain D(A(t)) = 3C2 for a l l ? > 0 generates a 
strongly continuous semigroup on 3C]. Moreover, it is 
dissipative, since 

<A(0 
Wl 

"i 

= I {rvy1-vw1+[v«(rvM'1)+/o5(Ofi]'fi]rfn 

= - y1«V«(7,Vw1)fi?Q+ [ V - f r v w , ) ] ^ ! dU 

- pg(t,r,d)\vl\
2dQ=-\ pg(t,r,d)\vl\

2dQ<0. (12) 
Jo Jo 

Thus, equation (11) represents an effective damper for (5). 
Unfortunately, such a control or damper is difficult to realize 
physically. Therefore, we will consider various restricted 
forms of (11) that are amenable to physical implementation. 

3.1 Patch Damper. In silencing a large drum, we ob
serve that the drummer usually puts some form of dampers 
(e.g., hands or damping pads) over certain portions of the 
drum's vibrating surface. Here, the dampers are only effective 
over certain portions of the drum surface. We may ask: where 
should the drummer place the dampers to silence the drum as 
quickly as possible? This suggests the following optimization 
problem: 

Let 0 C ( 0 denote the effective region for the control or 
damping force at time t. We assume that 

At,r,d) = 
-gwt(t,r,6) on Qc(t)CQ, 

0 on fl-fic(0, 
(13) 

where g is a specified real positive number, and the area of 
flc(0 is fixed. We define 1 1 ^ , the set of all admissible 
tic ( 0 's, as the set of all subsets of Q such that measure fic ( 0 
= a (modulo sets of measure zero), where a is a given positive 
number. Find a fic ( 0 € "\lad such that 

8 ( 0 = \af(t,r,e)w,(t,r,d)dQ 

\ 
( 0 

(9) takes on its minimum value. 

glw,(t,r,6)l2dU (14) 
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This problem has a simple solution. For a given fixed /, 
consider the level sets Fp of the function p = \w, (t,r,8) 12 on 
fi as defined by 

r^ = {(r,6)<iQ:p(r,8) < /3), /3 a real number. (15) 

Then an optimal choice for 0 C (0 is given by a level set T^O 
such that measure Tp" = a (see [9, 10] for justification of this 
result). Physically, this result implies that the control or 
damping force should be applied over a region where the 
vibration speed (or the kinetic energy, in the case of a dish 
with uniform density) is the highest, provided that a is suf
ficiently small. This agrees with the intuitive deduction that 
the damping force should be applied over the region where the 
dish vibrates the most. Note that Tg" may be composed of 
disconnected sets. A more realistic approach is to take 1 1 ^ as 
the set of all Uc ( 0 's corresponding to translations of a given 
nonempty subset Qco C Q such that flc(0 C Q. The com
plexity of this problem depends on the geometric shape of Qco. 
In what follows, we will consider a simple, but useful 
specialized case. 

3.2 Sweeping Damper. Let Qco = {(r, 0): 0 < /•„, < r < 
r0; 0 < 0 < d0 < 2TT), where 0O is a given aperture angle. We 
define Qc (5 (0 ) as a rotation of fico given by 

nc(8(t))=l(r,6):0<rin <r<r0;5U) <0<0„ + 5(O ] (16) 

corresponding to the effective region for the control or 
damping force specified by (16). The rotation angle 5(0 is to 
be chosen to achieve rapid damping of the dish vibrations. 
This form of control or damper can be implemented 
physically by a rotating arm equipped with suitable vibration 
damping material in close contact with the dish surface as 
shown in Fig. 2. Thus, we have, in effect, a sweeping passive 
damper. The simplest form of sweeping damper is one in 
which the damper arm rotates at a constant speed. In a space 
environment, it may be desirable to rotate the damper arm 
only when the vibration amplitude is sufficiently large. We 
may also optimize the damper arm position by considering the 
rate of change of the total energy corresponding to this form 
of damper given by 

8u,«(/))=- q(t,e)de=~\ q(t,e+b(t))dd, 
J 6(0 JO 

where 

q(t,6)=\r° g\w,(t,r,8)\2rdr. 

(17a) 

(176) 

Here, we choose 5(0eIR to minimize S(t, 5 ( 0 ) - Since the 
function w, = wt(t,r,8) is periodic in 8 with period 2ir, we 
may restrict 5 (0 to the interval [0, 2TT]. Evidently, £ = &(t, 
5 ( 0 ) is continuous with respect to 5(0 on the compact in
terval [0, 2JT]. Hence there exists a 5 (0 =5* (OS [0, 2ir] that 
minimizes t(t, 5 ( 0 ) • However, the minimum point 8*(t) may 
not be unique. When w, = w, {t,r,6) is a continuous periodic 
function of 8 on IR with period 2ir, 8 = 8 (t, 5 ( 0 ) is dif
ferentiable with respect to 5 (0- Thus, a necessary condition 
for 5* ( 0 to be a minimum point is: 

dS( / ,5 (0) 

3[5(0] 6'U) Jr;„ 

\w!(t,r,8a+8*{t))\2)r dr = Q (18) 

or 

P \wt(t,r,8*(t))\2rdr=\r(1 \w,(t,r,d0 
•> rin •> 'in 

+ 8*{t))\2rdr. (19) 

This condition implies that at the optimum position of the 

•ANTENNA-FEED 

MOVABLE DAMPER 
ARM 

DAMPER IN CONTACT 
WITH DISH SURFACE 

REFLECTOR 

Fig. 2 Sketch of dish reflector with a movable damper (the damper 
may also be placed on the backside of the reflector for reducing its 
effect on the antenna characteristics) 

damper arm, the average values of Iw, ( / , • , • ) I2 along the 
two arm edges are equal. When w, = w,(t, r, 6) is a con
tinuously differentiable periodic function of 8 on IR with 
period 2-K for fixed t and r, 8 = 6 (t, 5 ( 0 ) is twice dif
ferentiable with respect to 5 (0- Consequently, a sufficient 
condition for 8*(t) to be a local minimum point is that 

d 2 S ( q ( Q ) 

d[5(012 «•(() 
gUeJr ;„ 

\w,(t,r,d) \2r dr\ 
!«=«*(() 

-~L\r° ^n(t,r,8)\2rdr , . , , ]><>, (20) 

[jr
r° \w,(t,r,8)\2rd^ 

- f T ° 

or 

a f ro 
50 =«•(') 

\w, (t,r,d)\2rdr ] )+«•(') 
(20) 

This condition implies that the rate of change of the average 
value of \w,(t, ' , • ) \ 2 along the arm edge 0 = 5*(O with 
respect to 8 is greater than that along the arm edge 
0 = 0o + 5* (t). The determination of the behavior of the 
minimum point 5*(0 with respect to t is a difficult task. We 
expect that 5* may be a discontinuous function of t, since the 
oscillatory nature of w = w(t, r, 8) with respect to t and 0 may 
cause the optimum position of the damper arm to switch from 
one portion of the disk to another. 

It is useful to derive the modal representation of the 
equation of motion for the dish with a sweeping damper and 
with constant p and T. Consider the Laplacian operator 

y2 v 2 w = 72(w„. + /- [wr+r 2wm) (21) 

with domain Hl(Q) where y2 = T/p > 0. It is well known [11] 
that this operator is self-adjoint in L2(Q) and its spectrum is 
purely discrete, real, and negative. Moreover, its or-
thonormalized eigenfunctions <£,„„ = 4>,„„ (r, 0) corresponding 
to eigenvalue - \„m given by 

9m(0) = Rmn (/•) ® m (0), m,n = 1,2, . . . , 

Rmn{r) = Amn{Jm(\m„r/y)-[Jm(\mnrin/i) 

r/y)), 

e m (0)=Tr 

/Y, 

2 cos(md+\l/ , ) . 

(22a) 

(226) 

(22c) 
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Fig. 3 Energy decay for various initial energy distributions and dif
ferent forms of movable dampers 

Table 1 Eigenvalues Xm„, m,n = l, . . . ,5 for p = 0.05 
kg/m2, T= 8.9kg/sec2,rin =\m andr0 =51 m w(f,r,0) = £ amAt)Rm„{r)em(6). (25) 

X 
1 

2 

3 

4 

5 

1.003561 

1.343446 

1.669067 

1.985120 

2.294629 

1.839108 

2.201984 

2.553370 

2.894538 

3.227786 

2.669140 

3.039824 

3.404627 

3.759853 

4.107166 

3.498581 

3.870689 

4.243911 

4.608258 

4.965010 

4.328277 

4.698590 

5.077489 

5.448244 

5.812149 

Amn = J2/[raP(r0)-rinp(rin)], (22d) 
where 
p (r) = J,„ _, (X,„„ r/y) - [Jm (X,„„ r/y) 

/Ym(K„r/y)]Ym^i\,„„r/y)] (23) 

form an orthonormal basis for L2(Q), where J,„ and F,„ 
denote the mth order Bessel function of the first and second 
kind, respectively. The eigenvalue X,„„ is the «th root of the 
equation: 

Jm(\rin/y)Ym(\r0/y)^Jm(\r0/y)Ym(\rin/y). (24) 
Thus, we can express the solutions to system (2)-(4) (with a 
sweeping damper and constant rand p) in the form: 

It can be readily verified that the coefficients a,„„ (t) satisfy 
the following countably infinite dimensional system of or
dinary differential equations: 

«/w.(0+XL«m„(0 

k 1=1 c O -* 

m,n = 1,2, . . . . (26) 

For the case of a sweeping damper with Qc (t) = fic (5(0) 
given by (14), the damping coefficient corresponding to the 
integral in (26) can be rewritten as 

to ,^J,nn(r,d)<l>k,(r,e)dn 
J S i c W)) 

f o r«0+«(o 
= RmAr)Rk,(r)rdr\ Qm(d)Qk{6)de. (27) 

For k = m, we have 
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C r0 C\ w h e n n = /, 
Rmn{r)Rml(r)rdr= 1 (28) 

J r>» [0 otherwise, 

(• «o+«C> , 1 

JS(0 27T 

- m _ ' s in2 m 0O sin [2(w 5 ( 0 + i^m)] 

+ (2 /w)" J sin(2m d0) [ 1 - 2sin2 (m 5 (/) + i/-m)]). (29) 

Thus, equation (26) becomes: 

a,„„ ( 0 +gp~1Am (t)am„ (t)+\2
mnamn (t) 

= -sp~l E f(r°^mn('-)^/('-)'-«''-(n
0em(^ 

W = l L J r ' « J 0 

k*m 

+ b{t))Qk(e+h(t))dd\jakl{t),m,n=\,2 (30) 

Evidently, as m — oot the diagonal terms of the damping 
matrix given by gp~lAm(t) tend to g80/(2wp) which is in
dependent of 8(t). 

3.3 Computer Simulation Studies. It is of interest to 
obtain estimates of the energy decay of the dish with sweeping 
dampers. Unfortunately, such estimates are not readily 
obtainable from a priori estimates of the solutions. Therefore 
we resort to computer simulations for gaining some idea on 
the performance of various forms of sweeping dampers. Here 
we use truncated versions of (30) with additional small 
residual damping terms goP~lamn (t), where g0 = 0.001. The 
numerical values for the dish parameters used in the 
simulation are 

p = 0.05kg/m2, r=8.9kg/sec2 , rin = lm, r0 = 51 m 

and g = 0.1. For these parameter values, the eigenvalues X,„„ 
for m,n = 1, . . . ,5 are given in Table 1. In the computer 
simulations, the dish is partitioned into 36 10 deg sectors. The 
optimal damper position at each time step is determined by 
locating a sector with the highest kinetic energy. Here b(t) is 
allowed to take on one of the 36 values. Thus, the resulting 
8* (t) represents an approximation to the optimal S(t). Figure 
3 shows the energy decay for various initial kinetic energy 
distributions and different forms of sweeping dampers in
cluding a damper stepping at a constant rate of 20 deg/sec, a 
randomly positioned damper, and the approximate optimally 
positioned damper as discussed earlier. In the case of a 
randomly positioned damper, the set of all admissible 8(t)'s 
(i.e., (O.TT/18, 2TT/18, . . . , 35TT/18J) is uniformly 
distributed. The selection of the damper position at any time 
is made with the aid of a random number generator. From the 
numerical results, it is apparent that in all cases, the total 
modal energy (first 25 modes) decays monotonically with 
time. As expected, the fastest energy decay is achieved by the 
approximate optimally positioned damper. 

4 Concluding Remarks 

The proposed approach for damping the dish-reflector 
vibrations in large spaceborne antennas leads to simple 
vibration dampers or control systems that can be implemented 
physically. Their effectiveness depends primarily on the 
performance of the damping mechanism attached to the 
movable arm for energy dissipation. This mechanism may 

correspond to a passive or an active velocity feedback control. 
In the actual physical system, the optimal location for the 
damper arm of a sweeping damper can be determined by 
measuring the rate of energy dissipation given by (17). This 
may be accomplished by using an optical velocity sensor array 
that radially scans over the entire dish at a rapid rate. 

In this paper, a simplified mathematical model is used to 
illustrate the basic ideas. The proposed approach may also be 
applied to more complex realistic situations where the dish is 
constructed from elastic ribs covered with thin flexible 
material. In this case, movable patch dampers may be more 
suitable. Finally, in the simplified analysis given here, it has 
been assumed that the damper arm motion is instantaneous. 
When the damper arm is driven by an electric motor, we may 
model the damper-arm motor dynamics by 

J0d
2b(t)/dt2+k6db(t)/dt = k7u(t), (31) 

where J0 is the moment of inertia of the damper-arm and 
motor rotor; kT is a positive torque constant; kb is a friction 
coefficient; and u is the input voltage. It is required to find a 
feedback control w which minimizes t(t,b{t)). The inclusion 
of the foregoing equation into the mathematical model leads 
to a new interesting problem in optimal control. 
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Analogy Between Dispersion in Porous Media 
and in MHD 

K. K. Mandal1, G. Mandal2, and M. Mandal2 

Introduction 

Recently Chandrasekhara et al. [1] have studied the 
asymptotic analysis of the convective diffusion of a solute in a 
Brinkman flow of a viscous liquid through a porous bed 
between two parallel horizontal plates. Using the Brinkman 
equation [2] for flow through porous media they have ob
tained Darcy velocity profile and calculated the dispersion 
coefficient taking Taylor's model [3] for convective diffusion. 
But Taylor's model is asymptotically valid for large time only. 
Moreover, in many situations is it necesary to study all-time 
dispersion analysis taking the Brinkman model for the flow. 
Gill and Sankarasubramanian [4] have constructed a 
dispersion model which is valid for all time by allowing the 
dispersion coefficient to vary with time. Following [4], 
Annapurna and Gupta [5] have studied unsteady MHD 
convective diffusion taking the Hartmann- profile as the 
velocity profile. 

In this Note we have studied the unsteady convective dif
fusion for a flow through a porous bed between two parallel 
horizontal plates taking Gill and Sankarasubramanian's 
model and using the velocity profile of Chandrasekhara et al. 
[1]. Ultimately, we have reduced our convective diffusion 
equation to a form that is analogue to that obtained in [5]. A 
physical explanation justifying this analogy may be given as 
follows: Both for the Hartmann problem and the Brinkman 
equation, the liquid is taken to be viscous. It is well known 
that in the Hartmann flow the Lorentz force opposes the fluid 
to flow across the magnetic lines of force and thus gives rise to 
a resistance against the flow. Similarly in the case of flow 
through a porous medium the granular particles forming the 
matrix of the medium offer an analogous resistance as the 
viscous fluid passes through the pores between the granular 
particles. After obtaining the analogy we have exploited the 
results of [5] to deduce analogous analytic results. 
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Mathematical Formulation and Establishment of 
Analogy 

We consider the laminar flow of a viscous fluid through a 
porous bed between two infinite parallel plates y = ± h under 
the action of a uniform pressure gradient P. Chandrasekhara 
et al. [1] have obtained the velocity ux along x-axis (parallel to 
the plates) for such a flow in the form 

r cosh(gy/ft) 1 

L cosh a J ' 
(1) 

where 

Q=P/a2, o=h/Vk, P=-(h2/n)(dp/dx). (2) 

and p is the hydrodynamic pressure. The average velocity u is 
given by 

I f * T tanho-1 

If the solute diffuses in the preceding fully developed flow, 
the concentration C(t,x,y) of the solute satisfies the con
vective diffusion equation: 

dC dC 
Tt+u*Tx ">{ d2C d2C\ 

(4) 
dx2 ' dy 

where the molecular diffusivity D is assumed to be in
dependent of C. We introduce the dimensionless variables 

Dt C Dx 
Co' X~Wu' T~-

y v Dxs 

hL h hlu 
(5) 

where C0 is the concentration of the initial slug input 
satisfying 

C(0,x,y)=C0 for \x\ < -xs 

2 s 
and C(0,x,y)=0 

for \x\ > -x,. 
2 

(6) 

We now define a new axial coordinate moving with the 
average velocity w of the flow as xt =x— tit or £ =X— r in the 
dimensionless form. 

Using (1) and (5) in (4) and transforming to the (T, £, rj) 
coordinate system, we get 

3d a r 1 cosh din 3d 

°~dj + dr (ffcothor-l) 

r 1 cosh din 

a— 1) L a sinh a J 

1 

Pe1 

d2e d2e 
+ a?2 dri2 (7) 
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Fig. 1 Plot of [K2 (T) -
permeability parameter, a 

Pe'2] against for several values of im-

where Pe( = uh/D) is the Pe"clet number. The initial and 
boundary conditions for (7) are 

1 

(8) 

6(0,X,rj) = \ for \X\<-XS, 

6(0,X,r1) = 0 for \X\>-XS, 

0(T,OO,IJ) = O, 
de de 

— ( T , * , - 1 ) = — ( T , * , 1 ) = 0 
or] or) 

where the last two conditions are consistent with no mass 
transfer at the channel walls. 

At this stage we observe that our equation (7) and con
ditions (8) become identical with the equation (8) and con
ditions (9), respectively, of [5] only if we replace M in [5] by a. 
Thus an analogy between our problem and that discussed in 
[5] is fully established. Our nondimensional impermeability 
parameter a plays the role similar to that of the Hartmann 
number M in [5]. 

Following [4] and [5] we expand 6 in the form, 

0 = Om(T,Z)+ D A (r.Tj) 
a*0« 1 f+1 

«=1 ^k 

and introduce the generalized dispersion model in the form 

(9) 

to get 

* , ( T ) = 0 , 

It may be pointed out that higher order dispersion coefficients 
will decrease in magnitude rapidly and accordingly K2 (r) is 
the most important dispersion coefficient. 

Results and Discussion 

The authors of [5] concluded from their numerical 
calculations that for small values of M the values of 

K2{r)-Pe~\ 

K*2{ = \\m [K2(T)-Pe2]), andtf3( = lim K3(T) 
7-—OO T—<X> 

are highly oscillatory and the amplitude of oscillation 
gradually decays with increase in M. However, they men
tioned that the physical reason for such a behavior was 
somewhat obscure. Also such oscillations are absent in [4], 
Moreover, the range of a [as indicated by Katto and Masuoka 
[6]) for which the Brinkman equation is valid is wider than the 
range covered in [5], Therefore, we have, recalculated the 
numerical results accurately and widely using double precision 
variables with the help of Burroughs B 6700 computer. Our 
calculations show that none of K2 (r) — Pe~2, K2", and K3 

oscillates for any value of a which is in conformity with [4]. 
Consequently we present our numerical results in detail to 
discuss the effect of impermeability parameter a on dispersion 
coefficients K2 (T) — Pe2, K2, and K3. The hydromagnetic 
analogue of this discussion immediately follows if one 
replaces a by M. 

Table 1 

1 
Pe2 (CTCothff-1)2 L6 + . 

(10) 

(ID 
3 coth a coth2 a ] 

Ta 2 J 

Kr Kn 
0 
0.02 
0.2 
0.4 
0.6 
0.8 

1.9048 X 10 
1.9047 x 10 
1.8997 x 10 
1.8846 x 10 
1.8601 x 10 
1.8267 X 10 

1 
3 
5 

10 
100 
200 

1.7854 X 10" 
1.1845 x 10 
7.0743 x 10" 
2.5103 X 10" 
3.2500 x 10" 
8.2292 x 10" 

-2 

-J 
-b 

2a4 

(acothff-1) 2 ~t n2Tr2(n2ir2 + o2)2 
(12) The values of K2* against a are shown in Table 1 which 

shows that with increase in a, K2* monotonically decreases. 
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Physically, this may be expected from the fact that a decrease 
in permeability flatens the Darcy velocity profile and thereby 
decreases dispersion. 

Figure 1 shows that for a fixed a, [K2 (T) —Pe2} first 
increases with increase in T and then attains its asymptotic 
value at a time of order 0.5 for all values of a. This figure also 
presents that with increase in a, \K2(r)—Pe~2\ always 
decreases. The figure further shows that although the at
tainment of state of steady dispersion remains unaffected by 
a, at the initial stage the effect of a is to reduce the rate of 
growth of the spreading of the solute. 
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Tresca's Yield Condition and the Rotating 
Disk 

U. Gamer1 

The displacement field belonging to the elastic-plastic stress 
field in a rotating solid disk that can be found with the help of 
Tresca's yield condition, in textbooks on plasticity, is 
discontinuous at the elastic-plastic interface. Tresca's yield 
condition cannot be applied to this problem since its 
associated flow rule predicts a negative plastic strain caused 
by a tensile stress. 

1 Introduction 

The theoretical treatment of elastic-plastic rotating disks 
was started by F. Laszlo in 1925 [1] and since then, interest in 
this problem has never ceased. Much experimental and 
theoretical work has been done under various assumptions 
and the topic has entered many textbooks. 

The elastic-plastic stress distribution in a rotating annular 
disk can be easily calculated with the principle of momentum, 
Hooke's law, Tresca's yield condition, and the conditions of 
vanishing radial stress at the free edges of the disk and 
continuous radial stress at the elastic-plastic interface, 
respectively [2-4]. Displacement need not be taken into ac
count. 

The same approach is usually made for the determination 
of the elastic-plastic stresses in a rotating solid disk. The 
condition of vanishing radial stress at the inner free edge of 
the annulus is replaced with the condition of finite radial 
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the center of the solid disk without consideration of 
displacement [2-5]. Some authors do not investigate explicitly 
the elastic-plastic stress distribution but consider only the 
fully plastic state in order to find the critical angular velocity 
that causes bursting [6, 7]. C. R. Calladine [7] is interested in 
deformation and studies the collapse mechanism. He finds: 
"For a solid disc the mechanism ee = li/r, iz = —li/r, er = 
0, gives singularities in the strain increments at the centre, 
which can be interpreted as a tendency for the disc to 'thin' so 
much as to produce a small hole very quickly. These 
singularities are in fact a consequence of the precise angularity 
of the Tresca yield condition. If a small 'rounding' of the edge 
could be allowed, the singularity would disappear, because in 
the immediate vicinity of the centre the stress components o> 
and ae are very close. This somewhat curious state of affairs 
should not be regarded as reflecting discredit on the Tresca 
condition; it must always be remembered that our main aim 
here is to predict bursting speeds." 

In the following it is shown that the displacement field in 
the solid disk derived from the flow rule associated with 
Tresca's yield condition and the usual stress distribution is 
discontinuous at the elastic-plastic interface and that it is not 
possible to receive a meaningful solution with the help of 
Tresca's yield condition and its associated flow rule at all. The 
same is true for the spinning solid cylinder in a state of plane 
strain. 

2 Stresses and Displacement in the Elastic and Plastic 
Region 

The distribution of stresses and displacement in a rotating 
elastic disk are well known. One finds, e.g., in [8] 

E A 

' i + vT2' 

E A 
• + • 

1-

E 
\ + v r' 1 

3 + v , , 
B pw2r2, 

B — pcoV, 

A „ 
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(2.1) 

(2.2) 

(2.3) 

where the usual notation has been adopted. 
For perfectly plastic material Tresca's yield condition and 

the principle of momentum give for am > arr > azz 

orr = a0--~pw2r2+ - , (2.4) 
3 r 

aM = a0 (2.5) 

with the yield stress a0. 
Since according to the flow rule there is no radial plastic 

strain increment, Hooke's law applies for the radial strain 

trr = g [(1 - v)a0 - - pw2r2 + - J 

and integration yields 

u= ,̂ [(1 - y)o-0/- - - p c o V + C log r + D (2.6) 

The elastic solution shows that onset of plastic flow occurs 
in the center of the disk. Hence, the plastic zone contains the 
center, r = 0, where arr and am have to be equal and finite and 
u must vanish. Therefore, in the plastic zone of a solid disk C 
= D = 0. 

The outer zone behaves elastically according to equations 
(2. l)-(2.3). The radial stress vanishes at the outer edge, r = b, 
and is continuous at the elastic-plastic interface, r = z. There, 
the displacement has to be continuous, too. Finally, the elastic 
circumferential stress must reach the yield limit, <j0, at r = z. 
These conditions read 
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Physically, this may be expected from the fact that a decrease 
in permeability flatens the Darcy velocity profile and thereby 
decreases dispersion. 

Figure 1 shows that for a fixed a, [K2 (T) —Pe2} first 
increases with increase in T and then attains its asymptotic 
value at a time of order 0.5 for all values of a. This figure also 
presents that with increase in a, \K2(r)—Pe~2\ always 
decreases. The figure further shows that although the at
tainment of state of steady dispersion remains unaffected by 
a, at the initial stage the effect of a is to reduce the rate of 
growth of the spreading of the solute. 
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Tresca's Yield Condition and the Rotating 
Disk 

U. Gamer1 

The displacement field belonging to the elastic-plastic stress 
field in a rotating solid disk that can be found with the help of 
Tresca's yield condition, in textbooks on plasticity, is 
discontinuous at the elastic-plastic interface. Tresca's yield 
condition cannot be applied to this problem since its 
associated flow rule predicts a negative plastic strain caused 
by a tensile stress. 

1 Introduction 

The theoretical treatment of elastic-plastic rotating disks 
was started by F. Laszlo in 1925 [1] and since then, interest in 
this problem has never ceased. Much experimental and 
theoretical work has been done under various assumptions 
and the topic has entered many textbooks. 

The elastic-plastic stress distribution in a rotating annular 
disk can be easily calculated with the principle of momentum, 
Hooke's law, Tresca's yield condition, and the conditions of 
vanishing radial stress at the free edges of the disk and 
continuous radial stress at the elastic-plastic interface, 
respectively [2-4]. Displacement need not be taken into ac
count. 

The same approach is usually made for the determination 
of the elastic-plastic stresses in a rotating solid disk. The 
condition of vanishing radial stress at the inner free edge of 
the annulus is replaced with the condition of finite radial 

Professor, Institut fur Mechanik, Technische Universitat Wien, Karlsplatz 
13, A-1040Wien, Austria. 

Manuscript received by ASME Applied Mechanics Division, December, 
1982; final revision, February, 1983. 

the center of the solid disk without consideration of 
displacement [2-5]. Some authors do not investigate explicitly 
the elastic-plastic stress distribution but consider only the 
fully plastic state in order to find the critical angular velocity 
that causes bursting [6, 7]. C. R. Calladine [7] is interested in 
deformation and studies the collapse mechanism. He finds: 
"For a solid disc the mechanism ee = li/r, iz = —li/r, er = 
0, gives singularities in the strain increments at the centre, 
which can be interpreted as a tendency for the disc to 'thin' so 
much as to produce a small hole very quickly. These 
singularities are in fact a consequence of the precise angularity 
of the Tresca yield condition. If a small 'rounding' of the edge 
could be allowed, the singularity would disappear, because in 
the immediate vicinity of the centre the stress components o> 
and ae are very close. This somewhat curious state of affairs 
should not be regarded as reflecting discredit on the Tresca 
condition; it must always be remembered that our main aim 
here is to predict bursting speeds." 

In the following it is shown that the displacement field in 
the solid disk derived from the flow rule associated with 
Tresca's yield condition and the usual stress distribution is 
discontinuous at the elastic-plastic interface and that it is not 
possible to receive a meaningful solution with the help of 
Tresca's yield condition and its associated flow rule at all. The 
same is true for the spinning solid cylinder in a state of plane 
strain. 

2 Stresses and Displacement in the Elastic and Plastic 
Region 

The distribution of stresses and displacement in a rotating 
elastic disk are well known. One finds, e.g., in [8] 
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where the usual notation has been adopted. 
For perfectly plastic material Tresca's yield condition and 

the principle of momentum give for am > arr > azz 

orr = a0--~pw2r2+ - , (2.4) 
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aM = a0 (2.5) 

with the yield stress a0. 
Since according to the flow rule there is no radial plastic 

strain increment, Hooke's law applies for the radial strain 

trr = g [(1 - v)a0 - - pw2r2 + - J 

and integration yields 

u= ,̂ [(1 - y)o-0/- - - p c o V + C log r + D (2.6) 

The elastic solution shows that onset of plastic flow occurs 
in the center of the disk. Hence, the plastic zone contains the 
center, r = 0, where arr and am have to be equal and finite and 
u must vanish. Therefore, in the plastic zone of a solid disk C 
= D = 0. 

The outer zone behaves elastically according to equations 
(2. l)-(2.3). The radial stress vanishes at the outer edge, r = b, 
and is continuous at the elastic-plastic interface, r = z. There, 
the displacement has to be continuous, too. Finally, the elastic 
circumferential stress must reach the yield limit, <j0, at r = z. 
These conditions read 

676/Vol. 50, SEPTEMBER 1983 Transactions of the ASME 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

Fig. 1 Angular velocity as a function of elastic-plastic interface radius 
for continuous stress (s) and continuous displacement (d) 
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Fig. 2 Stresses and discontinuous displacement as functions of 
radius for $2 
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Fig. 3 Radial stress, discontinuous circumferential stress, and 
displacement as functions of radius f o r d 2 = 2.55 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

Thus, there are four conditions but only three open unknowns 
A, B and z and there is no solution that satisfies all 
requirements. 

3 Elastic-Plastic Stress Distribution 

In the references quoted, displacement and hence the 
condition of continuity at the elastic-plastic interface is 
ignored. The conditions (2.7), (2.8), and (2.10) give 

fl2[(l + 3»)f 4 - 2(1 + 3e)r 2 + 3(3 + v)} = 24, 

EA I 
_ = -(,+3,),*rV, 

PR i 

1 — v 12 

(3.1) 

(3.2) 

(3.3) 

where the nondimensional angular velocity fi2 = poi2b2/a0 

and the nondimensional interface radius £ = zlb [4]. 
On the other hand, if the yield condition (2.10) is ignored 

and substituted by the indispensable condition of continuity 
of displacement (2.9) there follow the results 

Q 2 [ - ( l + 3 y ) f 4 - 2 ( l + 3 " ) r 2 + 9 ( 3 + i')]=72, (3.4) 

- ^ - ^ ( - - • i [ 3 + ' - 3 « + J " , ] ' " 4 
(3.5) 

EB 

\-v i - r 
(3.6) 

4 Numerical Results 

For v = 1/3, Fig. 1 shows the relations between the non-
dimensional angular velocity fi2 = poi2b2/a0 and the non-
dimensional elastic-plastic interface radius f = zlb for 
continuous circumferential stress (s) and for continuous 
displacement (d) according to equations (3.1) and (3.4), 
respectively. The onset of plastic flow, (Q*)2 = 8/(3 + c), 
depends only on the elastic stresses. At the occurrence of 
unrestricted plastic flow, on the other hand, the elastic region 
disappears, and the corresponding angular velocity, (fi**)2 = 
3, comes from equation (2.4). So, the two curves coincide for 
f = 0 a n d £ = 1. 

Figure 2 gives for fi2 = 2.55, the nondimensional stresses 
o-y/o-Q, and the nondimensional displacement uE/(b a0) in 
dependence of the nondimensional radius x = rib. At the 
elastic-plastic interface, x = £ = 0.40, one recognizes the 
expected discontinuity of the displacement. Therefore this 
result is not an admissible solution. 

On Fig. 3, also for fi2 = 2.55, the second result with 
discontinuous circumferential stress a tx = f = 0.61 is shown. 
This state of stress is certainly admissible but, as a solution to 
the rotating solid disk problem, it is still unsatisfactory since a 
small increase of fl is connected with a jump of om\ the yield 
condition is violated. So, neither of the two results solves the 
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5 Plastic Strain 

The plastic circumferential strain is the difference between 
the total strain that follows from equation (2.6) 

1 r 
eet = " (1 - v)a0 • 

1 2 2 C , ^ 
- piji'-r1 H — log r-\— 
9 r r J 

(5.1) 

and the elastic strain according to Hooke's law 

•v)oa+-po>2r2- TI 
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«# = (1 + 3v)pw2r2 + - (log r+p) + -
r r ?]• (5.2) 

El 9 ' 

In the case of the solid disk, C and D have to vanish and 
therefore, at the center, r = 0, where the stress is largest there 
is no plastic strain at all and outside of it the plastic strain 
belonging to a tensile stress is negative [9]! The conclusion is 
that the stress distribution based on Tresca's yield condition 
cannot be meaningful even in the totally plastic disk where the 
problem of violated continuity does not arise. 

In the related problem of the spinning solid shaft with free 
ends in the elastic state the relations 

am > arr > azz for 0 < r < b 

°m = °rr > °zz f ° r /" = 0 
hold as in the spinning elastic disk. The yield condition 

aee ~ azz = ao > 
of which equation (2.5) is a special case, leads to similar 
results concerning the plastic strain as discussed here for the 
disk [10]. 

The assumption 

<% = <V = azz + a0 

for the whole plastic region is made by some authors [2, 6, 11] 
but it does not work for compressible material either [12]. 
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Fig. 1 Strain distribution along a bar at various instants after impact 
with constant velocity of 15 m/sec 
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Fig. 2 Strain distribution for various values of K at 2000 /tsec after 
impact 
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Fig. 3 Strain distribution and appearance of a strain plateau at 2000 
psec after impact for different impact velocities 

variant stress-strain relation independent of strain rate. 
Predictions based on the strain-rate independent theory were 
generally in agreement with the experimental results by Diiwez 
and Clark [3] and many other investigaters. In particular, the 
experiments indicated the existence of a plateau of uniform 
strain adjacent to the impact end of a bar which was predicted 
by the theory. But there were the following discrepancies. 
First, the observed force-time variation at the impact end of a 
bar showed a higher stress than the theory predicted. Second, 
the wave front might propagate at the elastic wave velocity 
even in the bar prestressed into a plastic state while the rate-
independent theory predicted the plastic wave velocity 
associated with the tangent modulus of the static stress-strain 
curve. 

Taking into consideration the strain-rate effect of the 
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material, Malvern [4] could account for these contradictions, 
but his calculations did not exhibit the strain plateau. This 
appeared to be the main weakness of Malvern's strain-rate 
dependent theory [5]. Later, Malvern [6] and Wood and 
Phillips [7] pointed out that a strain plateau might be obtained 
with Malvern's theory. It should be remarked, however, that 
while in Malvern's earlier paper a constant velocity boundary 
condition was used, in his later paper and reference [7] a 
constant stress boundary condition was applied. Further, 
Suliciu, Malvern, and Cristescu [8] demonstrated that 
Malvern's linear overstress law could not predict a true 
plateau de/dx = 0 over any finite distance; an asymptotic 
plateau could occur. In addition, Cristescu [9] showed the 
existence of a stress plateau (asymptotic) under a constant 
velocity boundary condition. 

However, the existence of strain plateau has still not ex
plicitly showed within Malvern's theory under the condition 
of constant velocity impact and his constitutive equation of 
linear rate-dependence. 

In this paper, we show that the existence of the strain 
plateau (asymptotic) can be predicted by Malvern's strain-rate 
dependent theory even under the foregoing conditions and its 
appearance is governed not only by the strain-rate dependence 
of the material but also the impact velocity at the end of a bar. 

Numerical Analysis and Discussion 

The strain-rate dependent theory of Malvern for plastic 
wave propagation along a bar results in the following system 
of three quasi-linear partial differential equations: 

da dv 

dx dt 

E°-F = I T + * ( < T ' £ ) J 

where a and e are the nominal stress and strain, v is the 
particle velocity, E0 is Young's modulus, p is the density, t is 
the time, and x is the initial distance from the impact end. 
Malvern has assumed that the strain rate is proportional to the 
excess stress over the stress at the same strain in a static test, 
namely 

g(o,e)=Klo-M) (2) 
where f(e) is the static stress-strain relation, and K is a 
multiplicative constant that determines the magnitude of the 
dependence of the stress-strain curve on the strain-rate. The 
system of equations (1) and (2) is hyperbolic, which can be 
solved numerically by the method of characteristics. 

For hardened aluminum specimins, Malvern used 
/(e) = 6.89(20-0.01 /e)MPa((2 X 104 - 10/e)lb/in.2) together 
with the constants E0=68.9 GPa (107lb/in.2), p = 2.67 x 
103kg/m3(2.5 x 10-4lb.sec2/in.4), / f = 1 0 6 s e c - \ and 
impact velocity K=15 m/sec (600 in./sec). Using the 
preceding values and various values of K and V, we have also 
calculated the instantaneous distribution of strain along a bar 
and its time history at various stations. Thus, numerical 
results for constant velocity impact are shown in Figs. 1-3. 

Figure 1 shows the strain distribution in a bar at various 
instants of time after the beginning of the impact with con
stant velocity of 15 m/sec. The figure clearly shows the 
plateau of uniform strain adjacent to the impact end. This 
indicates that the strain plateau can exist within Malvern's 
theory under both conditions of the constant velocity impact 
and the constitutive equation of linear rate dependence, and 
its appearance requires a certain time. 

Journal of Applied Mechanics 

Figure 2 shows the strain distribution for various values of 
K at 2000 (isec after the impact with constant velocity of 15 
m/sec. The solid line is for Karman's solution neglecting 
strain-rate effect. We observe that the larger the value of K, 
the shorter will be the time required for the appearance of a 
strain plateau. It should be noted that the strain-rate 
dependence of the material becomes smaller with increasing 
of the value of K. The strain-rate independent theory of 
Karman may be obtained as the limiting case by taking /if—- oo. 

In Fig. 3 the effect of impact velocity on the form of strain 
distribution and the appearance of the strain plateau at 2000 
/xsec after impact is illustrated for the case of K=5 x 106 

sec - 1 . The figures shows that the magnitude of the plastic 
strain near the impact end increases with increasing impact 
velocity, but conversely, plateau length decreases. The latter 
indicates that the strain plateau appears much faster as the 
impact velocity becomes lower. 
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of the value of K. The strain-rate independent theory of 
Karman may be obtained as the limiting case by taking /if—- oo. 

In Fig. 3 the effect of impact velocity on the form of strain 
distribution and the appearance of the strain plateau at 2000 
/xsec after impact is illustrated for the case of K=5 x 106 

sec - 1 . The figures shows that the magnitude of the plastic 
strain near the impact end increases with increasing impact 
velocity, but conversely, plateau length decreases. The latter 
indicates that the strain plateau appears much faster as the 
impact velocity becomes lower. 

References 

1 Karman, T. V., and Duwez, P., "The Propagation of Plastic Deformation 
in Solids," Journal of Applied Physics, Vol. 21, 1950, pp. 987-994. 

2 Taylor, G. I., "The Plastic Wave in a Wire Extended by an Impact Load," 
British Official Report RC429, 1942. 

3 Duwez, P. E., and Clark, D. S., "An Experimental Study of the 
Propagation of Plastic Deformation Under Conditions of Longitutinal Im
pact," Proceedings of the American Society for Testing Materials, Vol. 47, 
1947, pp. 502-532. 

4 Malvern, L. E., "The Propagation of Longitudinal Waves of Plastic 
Deformation in a Bar of Material Exhibiting a Strain-Rate Effect," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 18, 1951, pp. 203-208. 

5 Kolsky, H., and Douch, L. S., "Experimental Studies in Plastic Wave 
Propagation," Journal of the Mechanics and Physics of Solids, Vol. 10, 1962, 
pp.195-223. 

6 Malvern, L. E., "Experimental Studies of Strain-Rate Effects and Plastic-
Wave Propagation in Annealed Aluminium," Behavior of Materials Under 
Dynamic Loading, ASME, New York, 1965, pp. 81-92. 

7 Wood, E. R., and Phillips, A., "On the Theory of Plastic Wave 
Propagation in a Bar," Journal of the Mechanics and Physics of Solids, Vol. 
15, 1967, pp. 241-254. 

8 Suliciu, I., Malvern, L. E., and Cristescu, N., "Remarks Concerning the 
Plateau in Dynamic Plasticity," Archives of Mechanics, Vol. 24, 1972, pp. 
999-1011. 

9 Cristescu, N., "A Procedure for Determining the Constitutive Equations 
for Materials Exhibiting Both Time-Dependent and Time-Independent 
Plasticity," International Journal of Solids and Structures, Vol. 8, 1972, pp. 
511-531. 

An Efficient Method for Computing the 
Critical Damping Condition 

D. J. Inman1 and I. Orabi2 

Introduction 

Recently several authors [1-4] have defined the concept of 
critical damping for linear lumped parameter systems with n 
degrees of freedom. The intent of this Note is to compare the 
difinitions given in [1] and [3] and to derive a method for 

Assistant Professor, Department of Mechanical and Aerospace 
Engineering, State University of New York at Buffalo, Buffalo, N.Y. 14260. 
Assoc. Mem. ASME. 

Graduate Student, Department of Mechanical and Aerospace Engineering, 
State University of New York at Buffalo. Currently at Department of 
Mechanical and Industrial Engineering, Clarkson College, Potsdam, N.Y. 
13676. Student Mem. ASME. . 

Manuscript received by ASME Applied Mechanics Division, August, 1982; 
final revision, December, 1982. 

SEPTEMBER 1983, Vol. 50/679 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

calculating a critical damping condition that is more com
putationally efficient than the conditions given in [1, 3, 4]. 

The systems of interest here are those that can be suc
cessfully modeled by a vector differential equation of the 
form 

Mx+Cx + Kx = 0 (1) 

Here, M, C, and K are real n x n symmetric positive-definite 
matrices, x = x(/) is a vector of generalized coordinates, and x 
and x are the velocities and accelerations, respectively. The 
eigenvalue problem resulting from (1) is 

(k2M+\C+K)q = 0 (2) 

where X is complex scalar called an eigenvalue of (2) and q is a 
nonzero vector of constants called the eigenvector of (2). 

Previous Work 

In [1], Beskos and Boley define critical damping for the 
system (1) by requiring the value of the damping coefficients 
c, to be a minimum such that the eigenvalues of (2) are 
negative real numbers. This is shown to correspond to those 
values of c, such that 

--[det(b2M-bC+K)]=0 (3) 
do 

where b is a positive real number and where det(.) indicates 
the determinant of the enclosed matrix. 

In [3], Inman and Andry defined a critically damped 
multidegree-of-freedom system as one in which each mode of 
vibration is a critically damped motion. That is, each solution 
of the eigenvalue problem (2) is a pair of repeated negative 
real numbers. This is then shown to be the case if and only if 
the coefficient matrices of (1) are such that C = 2 
(M-l/2KM-U2)U2. Here the exponent 1/2 indicates the 
unique positive-definite square root of the positive-definite 
matrices M~ ' and M~W2 KM~1'2, and M " 1 denotes the 
inverse of the nonsingular matrix M. This expression defines 
the critical damping matrix, denoted Ccr. 

In [4], Gray and Andry developed a computationally more 
efficient method of calculating Ccr as defined in [3], Namely 
they pointed out that Ccr can be calculated by Ccr = 
2M<t>AU2(j>TM where <j> is the modal matrix of K i.e., the 
matrix whose columns are the eigenvectors of K). The matrix 
A1/2 is a diagonal matrix whose nonzero elements are the 
positive square roots of the eigenvalues of K. This method of 
calculating Ccr requires the computation of one less square 
root than the method used in [3] requires. Thus only one 
eigenvalue-eigenvector problem need be solved to find Ccr. 

Both of the methods used to calculate Ca require the 
computation of one or more sets of eigenvectors. The method 
presented here yields Ccr without having to calculate any 
eigenvectors as in [3] and [4] and defines critical damping 
without having to calculate derivatives as in [1, 2]. 

Main Result 

It is desired to find a method of calculating the critical 
damping matrix that would avoid having to calculate the 
square root of a matrix or its eigenvectors. The following 
result provides such a method. 

Theorem: There exist n constants, fy, such that the 
damping matrix 

£ pj& (4) 
j=o 

causes the system 

y+Cy + Ky = 0 

to be critically damped in each mode. Here, K = M~ l / 2 

KM~m, and (1) and (5) are related by the eigenvalue 
preserving transformation^ = MU2x. 

This result follows from the Cayley-Hamilton theorem 
which yields the following representation of a function of a 
matrix. 

(6) 

where, the function/is such that/(o>,) and its derivatives exist 
for each eigenvalue, «,-, of A (see for instance [5]). For critical 
damping we require Ccr = 2Kl/1. Application of (6) then yields 

2KW2 = £ PjKJ (7) 

since K is positive definite. 
Let S denote the modal matrix for K such that STS = I. Let 

A denote the diagonal matrix of eigenvalues K. Pre and post 
multiplying (7) by ST and S respectively, yields 

2A1/2= "t PAJ- (8) 

This follows since 

STKJS = STKK . . .KS 

=STKSSTKS 
= A>. 

KS = AA 

Equation (8) is diagonal and may be rewritten in the form 

, ,1/2 
C02 

" , 1 CO] 

1 C02 C02 

. ,n -1 
u l 

, , n - l 
0>2 

Po 

01 

ft,-

(9) 

where w,- are the eigenvalue of K. If each of the o>, are distinct 
then the matrix in (9) has an inverse and the /3y are uniquely 
given by 

0i 

= 2 

COi tdf 

C02 C02 

, .n-l 

0)2 

0>! 

, ,1/2 
0>2 

(10) 
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Fig.1 

If K has repeated eigenvalues, these constants are still 
uniquely determined by examing the derivatives with respect 
to co, of equations (9) to obtain a set of n linearly independent 
equations (see for example [6]). The critical damping matrix 
can then the written as 

C« = 5 PJaK
J 

where /3,-cr are the solutions given in (10). The result then 
follows from [3]. 

Example 

The example shown in Fig. 1 with c3 = 0 is a two degree-of-
freedom system considered in Example 3 of reference [1]. 
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lb/ft = 43,779.528 N/m, k2 = 4000 lb/ft = 58,372.703 
N/m, m, = m2 = 2 lb-sec2/ft = 29.186 N sec2 m, and c3 = 
0 the minimization yields two critical damping curves. One 
curve separates a region of complete underdamping from a 
region of partial underdamping. The second curve separates 
the region of partial underdamping from a region of complete 
overdamping. A point on this second curve Cj = c2 = 279.6 
lb-sec/ft = 4080.202 N sec/M. The equation of motion (1), 
becomes 

m, 0 

0 m2 

x + 
c{ 0 

0 c2 

ki + k2 -

-k2 k-

x + 

J 
(11) 

With the preceeding values, the characteristic roots are given 
in [2] as X, = X2 = -69 .9 , X3 = - 4 . 5 , and X4 = -135.3 . 
Thus the application of the critical damping condition of [1] 
yields a system with one critically damped mode (X[ = X2) 
and one overdamped mode (X3 ^ X4). 

Next consider applying the critical damping condition of [3] 
to the preceeding example. Since, M = 21, the identity matrix, 
in this case the critical damping matrix can be found from C2

r 

= 2K. Using the appropriate matrices from (11) this becomes 

0 

0 c\ 
= 2 

kt+k2 -k2 

~k2 k2 

(12) 

This condition obviously cannot be satisfied unless k2 and c2 

are both zero, reducing the system to one degree of freedom. 
Thus, the condition given in [3] indicates that the only way to 
make both modes of this example become critically damped is 
to alter the structure. 

Intuitively and from examining (12) one is encouraged to 
add the damper c3 into the system in an attempt to achieve 
critical damping in both modes. With the addition of c3 in the 
(2,1) and (1,2) position of the damping matrix the equation 
C2

r = 2K then yields three nonlinear simultaneous algebraic 
equalities in the c, and k, which must be solved. The other 
approach [4] is to compute the square root of the stiffness 
matrix K and solve the three linear simultaneous equalities 
given by C = 2dA'/26T. 

Hence, the method of [3, 4] requires either the solution of 
simultaneous nonlinear algebraic equalities or the com
putation of eigenvalues (A'71) and eigenvectors (0) of the 
stiffness matrix K followed by the solution of a set of three 
simultaneous linear equations. However, use of the theorem 
presented in the foregoing offers a third possibility. Namely, 
Ccr can be computed by calculating just the eigenvalues of the 
stiffness matrix and the coefficients given by equation (10) 
and then solving three simultaneous linear equations for each 
of the coefficients c,. 

Recalling that in this example M = 21, equation (7) yields 

Ccr = fal+frK. (13) 

The eigenvalues of the stiffness matrix are «i = 613.9991 and 
o>2 = 4,886,0009, so that equation (10) yields: 

ft) 

0i 
= 2 

1 

1 

36.5878 " 

0.021 12 

613.9991 

4,886.0009 

- 1 24.7790 

69.8999 

Substitution of these values into (13) yields the critical 
damping matrix. Comparing this to the desired damping 
structure yields 

221.04 -84.5 C l + C 3 - C 3 

- c3 c2 + c3 -84.5 157.67 
= C (14) 

It then remains to solve the three very simple linear algebraic 
equalities resulting from (14) to find the value of the damping 
coefficient for each of the three dashpots. This yields ct = 
136.54, c2 = 73.17, and c3 = 84.5. These values cause the 
motion of the system of Fig. 1 to be critically damped in each 
mode (the characteristic equation is X4 + 189.3579X3 + 
12,428.2X2 + 327978X + 3,000,000 = 0, with roots X,., = M,2 

-24.78 and X3,4 = -69.90). 

Comparison of Methods 

The difference between the two approaches in defining 
critical damping for (1) can best be pointed out by considering 
the definition of critical damping for a single degree-of-
freedom spring, mass, damper arrangement. For such systems 
the equation of motion is the scalar ordinary differential 
equation, mx + ex + kx = 0. This system is critically 
damped if and only if either of the following statements are 
true: (0 ccr is the smallest value of c such that the system does 
not oscillate (this yields ccr = 2 mu> = 2 4mk), or (ii) the dis
criminant of the characteristic equation is zero (this yields ccr 

= 2-4rnk). Condition (i) is extended to multidegree-of-
freedom systems in [1] and [2], whereas condition (ii) is ex
tended in [3] and here. 
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When these tv/o definitions are extended to two or more 
degrees of freedom they no longer agree as shown in the 
example. The example illustrates that the critical damping 
condition of [1] is satisfied but only one mode is actually 
critically damped, the other mode is overdamped. The 
condition yields a stationary point, dividing regions of 
oscillation from regions of nonoscillation. On the other hand, 
the extension of conditions (;'/) to more than one degree-of-
freedom systems is algebraic and carries through to yield 
systems that are critically damped in each mode. 

The preceeding discussion indicates that the difference 
between the two basic methods lies in the difference in the 
definition of critical damping given in [1] and the definition 
presented in [3]. The definition of critical damping delineated 
in [3] requires each mode to be critically damped while the 
definition prescribed in [1] results in each mode being 
nonoscillatory. The method given in [1] is more general in the 
sense that it yields many choices of damping coefficients for 
producing a nonoscillatory system. Namely, any values of 
damping coefficients lying on the critical damping surface 
will yield a critically damped system as defined in [1]. On the 
other hand, application of the definition of critical damping 
given in [3] requires a very specific choice of damping 
coefficients. However, this choice of damping rates 
quarantees that each mode will be critically damped and not 
just nonoscillatory. Thus if one is free to make structural 
changes the analysis given here desirable. If dash pots cannot 
be added to the system, then the analysis given in [1] for 
critical damping or that given in [3], [7], or [8] for 
nonoscillation may be more useful. 

It should be pointed out that the calculation of the critical 
damping condition is "unstable" in the sense that a small 
perturbation of any of the coefficients ch mh or kt causes the 
system to lose its critically damped status. As is often the case 
with the one degree-of-freedom system, the interest in 
calculating the critical damping matrix is for comparison and 
design. As is shown in [3], the definiteness of the matrix C — 
Ca determines the oscillatory nature of (1). The matrix C— 
Ccr can also be used in design work as pointed out in [7] and 
[8]. 

Conclusions 

A comparison between two different methods of defining 
critical damping for multiple degree-of-freedom systems has 
been made. The distinction is made based on the nature of 
each mode. A more computationally efficient method of 
computing the critical damping condition has also been 
presented. This method does not require the calculation of 
eigenvectors or derivatives as previously presented methods 
do. In addition, and example has been given illustrating the 
difference between the various definitions. 
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Numerical Evaluation of Double Integrals 
With a Logarithmic or Cauchy-Type 
Singularity 

J. T. Katsikadelis1 and A. E. Armenakas2 

1 Description of the Numerical Procedure 

In solving two-dimensional boundary value problems by 
the boundary integral equation (BIE) method, double im
proper integrals of the following form [1-3] are encountered 

I(.P)=\\Rf(Q)K{Q,P)daQ, QG.v), P(xj)eR (1) 

whose kernel K(Q,P) exhibits a logarithmic or a Cauchy-type 
singularity. That is, denoting by r = I P—Q\ the distance 
between points P and Q, their kernel behaves like ln(r) or \/r 
when point P-*Q. The function/(Q) is defined on R and it is 
regular. The region R is plane and may be simply or multiply 
connected. It is bounded by a curve C which may be piecewise 
smooth. The index Q in daQ indicates that the integration is 
performed with respect to point Q, while point P remains 
constant. 

Integral (1) has been evaluated over triangular or rec
tangular regions [2-4]. Its values over these regions may be 
used to evaluate integral (1) over an arbitrary region R by 
subdividing it into triangles or rectangles. However, these 
shapes do not fit curved boundaries well. Consequently, to 
obtain accurate results the region near the curved boundary 
must be subdivided into many triangles or rectangles. 

In this Note, a procedure is presented for the evaluation of 
integral (1) which can be easily programmed on a digital 
computer. In this procedure the integrand is transformed to 
polar coordinates [1] whose origin is the point of singularity 
of the kernel. Thus, integral (1) may be rewritten as 

f f (• 2ir (• rcW) 

I(P) = j JRr(r,6)K(r)rdrdO= = JQ ]g r(.r,e)K(r)rdrd6 

(2) 

It is apparent that /•—0 when Q—P and lim rK(r) is a finite 

constant. Hence, the integrand of integral (2) is not singular 
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and can be evaluated by any of the known numerical 
techniques of double integration [5,6]. 

The numerical integration of (2) is performed by dividing 
the boundary C into intervals, referred to as boundary 
elements, by Mpoints qx, q2, . . • <?M, whose coordinates are 
known with respect to the fixed system of axes Oxy. Each 
boundary element can be approximated by a boundary curve 
(e.g., straight line, parabolic arc, etc.) The region R is then 
subdivided into M sectors by straight lines from point P to 

y, n 
.y.'n 

c u r v e C 

0 x,S 
Fig. 1 The two-dimensional region R bounded by the curve C. 

points q{, q2, . . . qM. The integral (2) can be approximated 
by 

I(P)=llh(P) (3) 

where referring to Fig. 2 

9i + i 

Fig. 2 The region R divided into M sectors. 

Table 1 Values of the computed integrals 
Number of 
boundary 
elements 

M 

h = 

5 
10 
20 
30 
50 

100 
150 
200 

h 

5 
10 
20 
30 
50 

100 
150 
200 

h-

5 
10 
20 
30 
50 

100 
150 
200 

J L 

^SS, 

-JJ. 

Approximation of the boundary element 

Straight Second-degree Third-degree 
line parabolic parabolic 

ln(s/xi +(y-pYdx 

0.16796 + 02 
0.17691+02 
0.17858 + 02 
0.17943 + 02 
0.17979 + 02 
0.17958 + 02 
0.17988 + 02 

1 
=^dxdy 

Jx2 + (y-p)2 

0.92128 + 01 
0.97732 + 01 
0.98917 + 01 
0.99576 + 01 
0.99883+01 
0.99945+01 
0.99967 + 01 

ker(Vx'! +y*)dxdy 

0.2426 + 01 
0.2361+01 
0.2349 + 01 
0.2343+01 
0.2340 + 01 
0.2340 + 01 
0.2340 + 01 

dy, exact value I2 = 0.17991 + 02 

0.17984 + 02 0.17988 + 02 
0.17989 + 02 0.17991+02 
0.17991+02 

exact value / 4 = 0.10000 + 02 

0.99945 + 01 0.99967 + 01 
0.99996 + 01 0.99998 + 01 
0.99999 + 01 

exact value I5 = 0.2339 + 01 

0.2340 + 01 0.2340 + 01 
0.2340 + 01 0.2339 + 01 
0.2339 + 01 

Fourth-degree 
parabolic 

0.17988 + 02 
0.17991+02 

0.99956 + 01 
0.99999 + 01 

0.2340 + 01 
0.2339 + 01 
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*-x" 

Fig. 3 Approximation of the boundary element by an N-degree curve 

//CP)= ri.r,d)K(r)rdrd6 
J 6; JO 

(4) 

In the following, a technique is presented for evaluating the 
integral (4) in the general case where the boundary element is 
approximated by a parabola of N degree. The straight line or 
the second degree parabola are special cases for N=l and 
N=2, respectively. 

Consider a sector extending between the lines Pq, and 
Pq,+1 and choose a system of axes of reference Pxy having its 
x axis normal to the straight line connecting points q, and 
q,:+1. Choose N-l interior points /w,(x,, y,)(i = 2,3, . . .N)on 
the element qiqi+1. The boundary element is approximated by 
an W degree curve whose equation has the following form 

x = x(y)= £ aky
k 

(5) 

This implies that any line y = constant intersects the curve 
approximating the boundary element only at one point. The 
coefficients ak are obtained from the solution of the 
following system of linear algebraic equations 

evaluation of integrals employing the method presented in this 
note. The input data of the program consists of the coor
dinates of the points qx, q2 . • • qM chosen on the boundary 
of the region of integration R. The integration is performed 
on each sector by using six-point recursive Gaussian 
quadrature for multidimensional integrals (subroutine 
RGAUSS of the CERN Computer Program Library is used). 
The program has been run on a CDC/CYBER 171 computer 
and the integrals shown in Table 1 were evaluated on a cir
cular region R of radius p = 2.5. 

From the numerical results it is apparent that the ap
proximation of a curved boundary element by a higher order 
parabola considerably decreases the computer time required 
to obtain results of a desired accuracy. In the cases con
sidered, the same degree of accuracy was obtained when the 
boundary was subdivided into about 200 straight line 
elements, 20 second-degree parabolic elements, 10 third-
degree parabolic elements, or 5 fourth-degree parabolic 
elements. An analogous reduction of computation time was 
achieved. 

Finally, it should be pointed out that the proposed 
technique can be employed in evaluating nonsingular integrals 
over a region bounded by a complicated curve. 
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D .J?f"1a/t=^i. ( i = l , 2 , . . . ,N+1) (6) 

In order that the method is also applicable to regions that 
are not convex, we will replace the angle 6, 0, < 6 < dN+l in 
the integral (4) by the variable y, yx < y < yN+ x. Referring to 
Fig. 3, the relation between 6 and y is 

0 = 0O + 0, 0 = arctanCy/jf) (7) 

Using the variable y the integral (4) is expressed as 

fJJV+l fcCP) f->W+l f 
f(r,y)K{r)Jiy)rdrdy (8) 

where J(y) is the Jacobian of the transformation (7). Thus, 

J(y) = 6'(y) = (x-yx'V(.x2+y2) x,yec (9) 
rc(f) = (x2+y2)m x,yeC (10) 

and 

dx 

~dj 
= £ (>c-l)akf )H) 

* = 2 

The integral (8) can be computed readily in the region yx < y 
^ 9N+1, 0 < /• < /-c using any numerical technique suitable 
for the evaluation of double integrals whose integrand [5, 6] is 
nonsingular. 

Flexible Thrust Pads of Fixed Inclination 

H. D. Conway1 and M. W. Richman1 

Introduction 

As is very well known, the load supported by a rigid thrust-
bearing pad varies markedly with its angle of inclination. At 
first the load increases rapidly with increase in inclination, 
reaches a maximum at a certain optimum angle, and then falls 
off quite precipitously as the inclination is further increased. 
The optimum angle for rigid pads of infinite aspect ratio was 
first shown by Lord Rayleigh [1] to occur when the 
inlet/outlet film thickness ratio is about 2.2. An extensive 
survey of the literature on the subject is given in the book by 
Cameron [2]. 

The object of the present investigation is to extend the work 
done on rigid bearings by Rayleigh [1] to take into account the 
elastic deformation of the bearing. Of particular interest is to 
determine the effect of deformation on both the total load 
supported by the bearing as well as on the angle of inclination 
at which the bearing supports the optimum load. This is done 
by modeling both the slider and pad as Winkler foundations 
[3] wherein the displacement is proportional to the local 
pressure. 

2 Numerical Results and Conclusions 

A computer program has been written for the numerical 
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*-x" 

Fig. 3 Approximation of the boundary element by an N-degree curve 

//CP)= ri.r,d)K(r)rdrd6 
J 6; JO 

(4) 

In the following, a technique is presented for evaluating the 
integral (4) in the general case where the boundary element is 
approximated by a parabola of N degree. The straight line or 
the second degree parabola are special cases for N=l and 
N=2, respectively. 

Consider a sector extending between the lines Pq, and 
Pq,+1 and choose a system of axes of reference Pxy having its 
x axis normal to the straight line connecting points q, and 
q,:+1. Choose N-l interior points /w,(x,, y,)(i = 2,3, . . .N)on 
the element qiqi+1. The boundary element is approximated by 
an W degree curve whose equation has the following form 

x = x(y)= £ aky
k 

(5) 

This implies that any line y = constant intersects the curve 
approximating the boundary element only at one point. The 
coefficients ak are obtained from the solution of the 
following system of linear algebraic equations 

evaluation of integrals employing the method presented in this 
note. The input data of the program consists of the coor
dinates of the points qx, q2 . • • qM chosen on the boundary 
of the region of integration R. The integration is performed 
on each sector by using six-point recursive Gaussian 
quadrature for multidimensional integrals (subroutine 
RGAUSS of the CERN Computer Program Library is used). 
The program has been run on a CDC/CYBER 171 computer 
and the integrals shown in Table 1 were evaluated on a cir
cular region R of radius p = 2.5. 

From the numerical results it is apparent that the ap
proximation of a curved boundary element by a higher order 
parabola considerably decreases the computer time required 
to obtain results of a desired accuracy. In the cases con
sidered, the same degree of accuracy was obtained when the 
boundary was subdivided into about 200 straight line 
elements, 20 second-degree parabolic elements, 10 third-
degree parabolic elements, or 5 fourth-degree parabolic 
elements. An analogous reduction of computation time was 
achieved. 

Finally, it should be pointed out that the proposed 
technique can be employed in evaluating nonsingular integrals 
over a region bounded by a complicated curve. 
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D .J?f"1a/t=^i. ( i = l , 2 , . . . ,N+1) (6) 

In order that the method is also applicable to regions that 
are not convex, we will replace the angle 6, 0, < 6 < dN+l in 
the integral (4) by the variable y, yx < y < yN+ x. Referring to 
Fig. 3, the relation between 6 and y is 

0 = 0O + 0, 0 = arctanCy/jf) (7) 

Using the variable y the integral (4) is expressed as 

fJJV+l fcCP) f->W+l f 
f(r,y)K{r)Jiy)rdrdy (8) 

where J(y) is the Jacobian of the transformation (7). Thus, 

J(y) = 6'(y) = (x-yx'V(.x2+y2) x,yec (9) 
rc(f) = (x2+y2)m x,yeC (10) 

and 

dx 

~dj 
= £ (>c-l)akf )H) 

* = 2 

The integral (8) can be computed readily in the region yx < y 
^ 9N+1, 0 < /• < /-c using any numerical technique suitable 
for the evaluation of double integrals whose integrand [5, 6] is 
nonsingular. 

Flexible Thrust Pads of Fixed Inclination 

H. D. Conway1 and M. W. Richman1 

Introduction 

As is very well known, the load supported by a rigid thrust-
bearing pad varies markedly with its angle of inclination. At 
first the load increases rapidly with increase in inclination, 
reaches a maximum at a certain optimum angle, and then falls 
off quite precipitously as the inclination is further increased. 
The optimum angle for rigid pads of infinite aspect ratio was 
first shown by Lord Rayleigh [1] to occur when the 
inlet/outlet film thickness ratio is about 2.2. An extensive 
survey of the literature on the subject is given in the book by 
Cameron [2]. 

The object of the present investigation is to extend the work 
done on rigid bearings by Rayleigh [1] to take into account the 
elastic deformation of the bearing. Of particular interest is to 
determine the effect of deformation on both the total load 
supported by the bearing as well as on the angle of inclination 
at which the bearing supports the optimum load. This is done 
by modeling both the slider and pad as Winkler foundations 
[3] wherein the displacement is proportional to the local 
pressure. 

2 Numerical Results and Conclusions 

A computer program has been written for the numerical 
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Analysis 

The model to be investigated is shown in Fig. 1. The lower 
surface moves with a velocity [/with respect to the upper one, 
the two surfaces being inclined to one another by a small angle 
A. Both are assumed to deform as Winkler foundations [3], 
and are separated from one another by a fluid of viscosity »/. 

Assuming a long bearing so that the pressure varies only 
with x, Reynold's equation for the calculation of the pressure 
pis [2] 

dx 

whence on integrating 

dx 
/h-h\ 

(2) 

where h is the film thickness at the place where the pressure 
gradient vanishes. 

The initially undeformed surfaces are assumed to be in
clined at a small angle A to one another. Modeling the sur
faces as Winkler foundations [3], the film thickness takes the 
form 

h=Ax+(\+\2)p (3) 

where \x and X2 are the foundation moduli for the slider and 
pad surfaces, respectively. As an approximation, these may be 
taken as the particular thickness divided by the appropriate 

modulus of elasticity. For convenience, then define the ef
fective foundation modulus of the two surfaces, X, as the sum 
X, + X2. Substituting equation (3) in equation (2) yields 

dh /h-h\ 
--em-n^-^J+A. (4) dx 

The exact closed-form solution of equation (4), from which h 
and hence p = p(x) can be calculated, is given in the Ap
pendix. The force per unit length, W, of bearing is then 
obtained by integrating the pressure. 

Results and Conclusions 

Figure 2 shows graphs of normalized load W* = Whl/-qUl2 

plotted against the normalized initial angle of inclination Qx 

= Al/h0 = (hx ~h0)/h0 for various values of the bearing 
flexibility parameter Q2 = 6Ur}l\/hl. The solution for the 
rigid case (Q2 = 0) is well known [2], and is given, in terms of 
notation used here, by 

W = 
1 

Q 
2 / « d + Q i ) -

Qi(2 + Qi) 
(5) 

Fig. 1 Thrust-bearing geometry 

As expected, it is observed that the load decreases markedly 
with increase of Q2 and hence an accompanying increase in 
bearing deformation. The decrease of load is seen not to occur 
so precipitously, however, as the flexibility of the surfaces 
increase. Moreover, as compared with the rigid (Q2 = 0) and 
nearly rigid cases, the effect on load of increasing inclination 
to an optimum value also appears to be much less dramatic as 
flexibility of the surfaces increases. These effects are similar 
to those obtained [2] by plotting W* = WhyUrfi- versus Qx 

= Al/h0 = (/!, —h0)/h0 for various values of bearing aspect 
ratio on the assumption that the bearing surfaces are rigid. 

The optimum load for a rigid bearing (Q2 = 0) is found to 
occur at a value of Q, = Al/h0 = (hx -h0)/h0 of 1.2 as was 
first observed by Rayleigh [1]. The optimum value of Q, 
corresponding to maximum load increases with increase of 

5.00 

Fig. 2 Graphs of normalized load IV* = Whjj/ijU/2 versus normalized 
slope Qi = Allh0 for various values of normalized flexibility parameter 
Q2 = 6Uvl\lhQ 
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Q2 

Fig. 3 Graph of normalized flexibility parameter Q2 = 6UI;/A//)Q versus 
optimum normalized slope Qi = Allh0 for maximum load 

Q2, as shown in Fig. 3. Again it is seen that the effect of in
creasing Q2 on the optimum value of Q\ diminishes with 
increasing flexibility. 
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A P P E N D I X 

To solve equation (4), first write it in a form 

dx 

~dh -k( \+B 
h-h 

Ahz-Bh+Bh). 
(A\) 

where B = 6t/r/X. The second term on the right-hand side may 
be expressed in partial fractions by factoring the denominator 
in the form 

Ah3-Bh + Bh=A(h-r) (h2+rh + 2b/r) (A2) 

wherea= -B/3A, b = -BhllA, c = b2 + a\ r = 
(b + c'Ayn + (b-c'A)l/i and all roots are chosen real. 
Equation (Al) may now be integrated to give 

(b-ar) L 
x=-C+-+-

A \2A2(b-ar) 

4b + r2(r+3h) 

r(r-h)\og 
(h-r)' 

tan" 

(h2+rh + 2b/r) 

h + r/2 
(A3) 

(2b/r-r2/4)'A (2b/r-r2/4)'A 

where C is a constant of integration. From the boundary 
conditionp(A: = /?0A4) = 0 and equation (3), it is found that 

B f . .-.. (K-r)2 

c= \2A2(b-ar) 
\r(r-h)\o% 

4b + r2(r+3h) 
+ TT^. , . . . , , tan" 

(hl+rhQ + 2b/r) 

(h0+r/2) 4 M4) 
(2b/r-r2/4)Vl "*" (2b/r-r2/4)'A 

which gives C as a function of h. To determine h, use the 
secondary boundary conditionp(x= (hl/A) = {h0/A) + I) 
= 0, equation (3), and equation t/14) to obtain 

/ • ( / • - -A)log[-
(h0-r)2(h2+rhl+2b/r) 

(hl-r)2(hl+rh0+2b/r) 

4b + r2(r + 3ti) 

(2b/r-r2/4)'/ -tan 
(h0-hx)(2b/r~r2/4f 

\_2b/r + h0hl + — (h0+hl) 

(A5) 

Equation (̂ 45) is the transcendental equation for h. 
Thus, the film thickness variation is obtained implicitly and 

the pressure distribution is found from equation (3). Finally, 
the load, W, is obtained by integrating the pressure 
distribution. The results may then be expressed in normalized 
form, and plots of W* = Wh\It\Ul2 versus Qt = Al/hQ = 
(ht -h0)/h0 are obtained for various values of Q2 = 
6Ur]l\/hl, as shown in Fig. 2. 
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Vibrations of Suspended Cables 

J. G. Gale1 and C. E. Smith2 

An analytical investigation of the small, normal-mode 
motions of a homogeneous, inextensible, perfectly flexible 
cable suspended in a gravitational field was made. With cable 
arc length as the independent variable, the differential 
equations that govern the mode shapes have irrational 
coefficients. A transformation of the independent position 
variable yields equations that have polynominal coefficients, 
which then lend themselves to power series solutions. Natural 
frequencies of oscillation and corresponding mode shapes are 
determined from these solutions. Figures showing the natural 
frequency ratios for a variety of cable support geometries are 
presented for both in-plane and out-of-plane motion. 

Nomenclature 

a = catenary size parameter; arc 
length-measured from the 
cable apex to a position 
where the cable makes an 
angle of 7i74 with the 
horizontal plane 

b = horizontal distance between 
cable support points 

g = gravitational acceleration 
h = vertical distance between 

cable support points 
/ = total length of the cable 
^ = arc length from the apex of 

the cable to any point on the 
cable 

u = in-plane, tangential dis
placement of a point on the 
cable from its equilibrium. 
configuration 

v = in-plane, normal dis
placement of a point on the 
cable from its equilibrium 
configuration 

w = out-of-plane displacement of 
a point on the cable from its 
equilibrium configuration 

a, a = angle that the cable makes 
with the horizontal plane in 
its equilibrium and displaced 
configurations 

y = angle between the vertical 
plane of the equilibrium and 
displaced cable configura
tion at a point 

a = nondimensional arc length: 
s/a 

T = nondimensional cable 
tension 

a> = nondimensional natural 
frequency of oscillation 

DISPLACED . 
CONFIGURATION-^/ 

/ 

\\ 
\ \ * — EQUILIBRIUM 
\ \ CONFIGURATION 
\ 
\ 
\ 
\ 
\ 
\ 

w ^ -

- " • * I = TOTAL LENGTH OF CABLE 

Fig. 1 Displaced configuration of hanging cable showing 
displacement vectors and angles 

Slash' = partial derivative with 
respect to a 

Dot = partial derivative with 
respect to 6 

Introduction 

Until the early 1970s, all attempts to solve the equations of 
motion for a uniform cable suspended from two points were 
approximations. Routh [1] presented the equations of motion 
and solved them for a nonuniform cable that hangs in the 
shape of a cycloid. Pugsley [2] performed some experimental 
work and developed an empirical equation for determining 
the natural frequencies of a symmetrically supported cable. 
Saxon and Cahn [3], and Goodey [4] developed approximate 
solutions to Routh's cable equations. In 1971, Smith and 
Thompson [5] presented the solution to the cable equations in 
the form of a power series and obtained the natural 
frequencies of vibration for symmetric and unsymmetric 
supports. The results in [5] were limited to in-plane modes of 
motion and depth-to-span ratios of less than 0.76. This paper 
extends the work reported in [5] to include out-of-plane 
modes and depth-to-span ratios up to 1.09. 

Analysis 

Figure 1 shows the relationship between the equilibrium 
configuration and the displaced configuration of a point on 
the cable. The nondimensional, linearized equations of 
motion for the three displacement components of the un
damped cable are given by 

u 1 [" v' 

a + al (1 + ff2 

1+ff2 

( l + ff2)1/2 

( 1 + O T 2 ) I / 2 

+ ( l + C T 2 ) 3 
= 0 (1) 

+ a ( 1 + f f 2 ) 1 7 2 a ( 1 + f f 2 ) 

1 

a (l + o-2)1 (2) 

w 

a a 
- ( 1 + f f 2 ) 1 

a (1 + ff2) .2-, 1/2 = 0 (3) 
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SAG PARAMETER ( b / V l ' - h 

Fig. 2 Natural frequency ratios for in-plane normal mode motion 
versus sag parameter for h/b = 0.0 

SAG PARAMETER (b/V( -h ) 

Fig. 4 Natural frequency ratios for out-of-plane normal mode motion 
versus sag parameter for h/b = 0.0 

Fig. 3 
versus 

Natural frequency ratios for in-plane normal mode motion 
sag parameter for h/b = 0.50 

Equations (l)-(4) complete the set of equations that describe 
the four unknowns u, v, w, and T. Note that equation (3), 
governing the out-of-plane motion of the cable, is in
dependent of the equations governing the in-plane motion of 
the cable. Actual coupling is reflected in nonlinear terms 
which are lost upon linearization. 

By assuming a normal-mode motion solution along with an 
appropriate independent variable change, the differential 
equations can be expressed as ordinary differential equations 
with rational coefficients. These equations can then be solved 
using power series solution techniques. The restriction that 
the displacements are zero at the support points will lead to 
the development of the standard eigenvalue problem for 
which the natural frequency ratios are the eigenvalues. Details 
of the equation development and solution technique are 
available in references [5] and [6]. 

Results 

A FORTRAN IV program was written that generates the 
power series expressions for the displacement of any point on 
the cable. A Newton-Raphson root-finding technique was 
then incorporated into the program to find values of the 
natural frequencies of oscillation which yielded zero 
displacements at the two fixed ends of the cable. Figures 2 and 
3 show curves of the first six natural frequencies of oscillation 
for in-plane motion of the cable for different values of the sag 
parameter (b/(l2 -h2)1'2) and support parameter (h/b). 

1.0 

SAG PARAMETER (b /V( -h ) 

Fig. 5 Natural frequency ratios for out-of-plane normal mode motion 
versus sag parameter for h/b = 0.50 

Figures 4 and 5 show curves of the first six natural frequencies 
of oscillation for out-of-plane motion of the cable for dif
ferent sag and support parameters. 

Conclusions 

Having developed an exact solution for the small 
oscillations of an unsymmetrical cable, general statements 
regarding the behavior of cable systems may be made which 
could prove useful in their design. Typically in design of 
mechanical systems, an attempt is made to assure that the 
natural frequencies of oscillation of the system are not 
"close" to possible exciting frequencies which may be im
posed on the system and could cause a resonance condition. 
Should resonant states appear imminent, several things can be 
done to the system to circumvent their possible occurrence. 
The system configuration (i.e., geometry, material, or 
structure) could be modified or damping could be introduced 
into the system. Damping may not significantly affect the 
natural frequencies of oscillation of the system, but it will 
attenuate its response at the resonant frequency. 

Since the work presented herein is for perfectly flexible, 
undamped cable systems, statements regarding natural 
frequency behavior may be made in reference to cable support 
position changes and cable length changes only. Inspection of 
the natural frequency curves will provide insight as to how 
cable geometry changes will affect the natural frequency 
ratios. 

1. For both in-plane and out-of-plane motion at any 
one support parameter value (h/b ratio), the natural fre-
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quencies increase for increasing values of the sag parameter 
(jbNl2 -h2). It should be observed that increased values of 
the sag parameter infer a "tightening" of the cable system. 

2. For both in-plane and out-of-plane motion at any one 
sag parameter value, the natural frequencies decrease for 
increasing values of the support parameter. The natural 
frequencies are not as sensitive to changes in the support 
parameter as they are to changes in the sag parameter (i.e., a 
50 percent increase in the support parameter may only reduce 
the natural frequency by 3 percent, whereas a 50 percent 
increase in the sag parameter may increase the natural 
frequency by 75 percent). Thus, if one is interested in 
modifying the natural frequencies significantly, the overall 
cable length, /, is the parameter that produces the most effect. 

The natural frequencies shown in Figs. 2-5 are non-
dimensional. To make the conversion to dimensional (radian) 
frequencies, it is necessary to multiply the nondimensional 
frequencies (u>'s) by Vajg. The cable parameter a is related to 
the cable geometry by the transcendental equation: 

b _ blla 
V / 2 - F ~ sinh(d/2«)' 

Solution to the preceding equation for a, can be easily ac
complished using standard numerical root-finding techniques. 

1. For both in-plane and out-of-plane motion at any 
one support parameter value (h/b ratio), the natural fre
quencies increase for increasing values of the sag parameter 
(b/V/2 -h2). It should be observed that increased values of 
the sag parameter infer a "tightening" of the cable system. 

2. For both in-plane and out-of-plane motion at any one 
sag parameter value, the natural frequencies decrease for 
increasing values of the support parameter. The natural 
frequencies are not as sensitive to changes in the support 
parameter as they are to changes in the sag parameter (i.e., a 
50 percent increase in the support parameter may only reduce 
the natural frequency by 3 percent, whereas a 50 percent 
increase in the sag parameter may increase the natural 
frequency by 75 percent). Thus, if one is interested in 
modifying the natural frequencies significantly, the overall 
cable length, /, is the parameter that produces the most effect. 

The natural frequencies shown in Figs. 2-5 are non-
dimensional. To make the conversion to dimensional (radian) 
frequencies, it is necessary to multiply the nondimensional 
frequencies (u's) by Va/g. The cable parameter a is related to 
the cable geometry by the transcendental equation: 

b _ blla 
s/l2 -h2 ~ sm(b/2a)' 

Solution to the preceeding for a, can be easily accomplished 
using standard numerical root-finding techniques. 
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The Effect of Plastic Deformation on the 
Acoustoelastic Response of Metals 

G. C.Johnson1 

Introduction 

The use of an ultransonic technique called acoustoelasticity 
for the nondestructive measurement of residual stress has 
received considerable attention recently. Acoustoelasticity is 
based on the observation that the speeds at which waves 
propagate in a structure depend on the stress in that body. To 
effectively determine the residual stress, the quantity being 
measured, in this case velocity, should be a function of the 
stress alone. Unfortunately, there are data that indicate that 
the velocity is dependent on prior plastic deformation in 
certain materials [1]. Given this observation, we seek to 
develop a continuum theory that allows for changes in wave 
speed as a function of plastic deformation. The work 
presented in this Note follows an earlier theoretical 
development along these lines [2]. However, the present 
approach employs different measures of the elastic and plastic 
deformation and so results in a set of velocity relations that 
may be more usable than those in [2]. 

The Elastic-Plastic Continuum 

The developments discussed here are based on the con
tinuum description of elastic-plastic response proposed by 
Green and Naghdi [3]. For simplicity, only the isothermal 
response of an isotropic material is considered. 

In deriving expressions for the propagation velocities of 
plane waves, an analysis of the motion of an infintesimal 
disturbance superposed on a finite, elastic-plastic defor
mation will be performed. As such, it is convenient to in
troduce three configurations of the body. Let the vectors X, x, 
and x* denote the undeformed reference state, the state of 
finite elastic-plastic deformation (called the deformed state), 
and the current state (which includes the superposed wave), 
respectively. We take the deformed state to be in static 
equilibrium so that x = x(X) and the total deformation 
gradient and Lagrange strain are 

F = ^ , E = ^ ( F r F - I ) . (1) 

The deformation gradient may be decomposed into elastic 
and plastic parts as [4, 5] 

F = F eF". (2) 

This decomposition has been used by Lee and his coworkers in 
their development of a finite deformation plasticity theory 
and has been discussed by Green and Naghdi [6] as it relates to 
their theory. In this regard, we recall that this decomposition 
is not unique since 

F = F eF", Fe = FcQ, F> = Q r F " (3) 

for all orthogonal Q. 
Elastic and plastic strains are defined as 

W = _ ( F ^ - I ) , E" = - (F^ rF" - I ) , (4) 

so that 

E = E" +¥pTEe¥'> (5) 

and we assume the free energy i/- to be a function of these 
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quencies increase for increasing values of the sag parameter 
(jbNl2 -h2). It should be observed that increased values of 
the sag parameter infer a "tightening" of the cable system. 

2. For both in-plane and out-of-plane motion at any one 
sag parameter value, the natural frequencies decrease for 
increasing values of the support parameter. The natural 
frequencies are not as sensitive to changes in the support 
parameter as they are to changes in the sag parameter (i.e., a 
50 percent increase in the support parameter may only reduce 
the natural frequency by 3 percent, whereas a 50 percent 
increase in the sag parameter may increase the natural 
frequency by 75 percent). Thus, if one is interested in 
modifying the natural frequencies significantly, the overall 
cable length, /, is the parameter that produces the most effect. 

The natural frequencies shown in Figs. 2-5 are non-
dimensional. To make the conversion to dimensional (radian) 
frequencies, it is necessary to multiply the nondimensional 
frequencies (u>'s) by Vajg. The cable parameter a is related to 
the cable geometry by the transcendental equation: 

b _ blla 
V / 2 - F ~ sinh(d/2«)' 

Solution to the preceding equation for a, can be easily ac
complished using standard numerical root-finding techniques. 

1. For both in-plane and out-of-plane motion at any 
one support parameter value (h/b ratio), the natural fre
quencies increase for increasing values of the sag parameter 
(b/V/2 -h2). It should be observed that increased values of 
the sag parameter infer a "tightening" of the cable system. 

2. For both in-plane and out-of-plane motion at any one 
sag parameter value, the natural frequencies decrease for 
increasing values of the support parameter. The natural 
frequencies are not as sensitive to changes in the support 
parameter as they are to changes in the sag parameter (i.e., a 
50 percent increase in the support parameter may only reduce 
the natural frequency by 3 percent, whereas a 50 percent 
increase in the sag parameter may increase the natural 
frequency by 75 percent). Thus, if one is interested in 
modifying the natural frequencies significantly, the overall 
cable length, /, is the parameter that produces the most effect. 

The natural frequencies shown in Figs. 2-5 are non-
dimensional. To make the conversion to dimensional (radian) 
frequencies, it is necessary to multiply the nondimensional 
frequencies (u's) by Va/g. The cable parameter a is related to 
the cable geometry by the transcendental equation: 

b _ blla 
s/l2 -h2 ~ sm(b/2a)' 

Solution to the preceeding for a, can be easily accomplished 
using standard numerical root-finding techniques. 
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The Effect of Plastic Deformation on the 
Acoustoelastic Response of Metals 

G. C.Johnson1 

Introduction 

The use of an ultransonic technique called acoustoelasticity 
for the nondestructive measurement of residual stress has 
received considerable attention recently. Acoustoelasticity is 
based on the observation that the speeds at which waves 
propagate in a structure depend on the stress in that body. To 
effectively determine the residual stress, the quantity being 
measured, in this case velocity, should be a function of the 
stress alone. Unfortunately, there are data that indicate that 
the velocity is dependent on prior plastic deformation in 
certain materials [1]. Given this observation, we seek to 
develop a continuum theory that allows for changes in wave 
speed as a function of plastic deformation. The work 
presented in this Note follows an earlier theoretical 
development along these lines [2]. However, the present 
approach employs different measures of the elastic and plastic 
deformation and so results in a set of velocity relations that 
may be more usable than those in [2]. 

The Elastic-Plastic Continuum 

The developments discussed here are based on the con
tinuum description of elastic-plastic response proposed by 
Green and Naghdi [3]. For simplicity, only the isothermal 
response of an isotropic material is considered. 

In deriving expressions for the propagation velocities of 
plane waves, an analysis of the motion of an infintesimal 
disturbance superposed on a finite, elastic-plastic defor
mation will be performed. As such, it is convenient to in
troduce three configurations of the body. Let the vectors X, x, 
and x* denote the undeformed reference state, the state of 
finite elastic-plastic deformation (called the deformed state), 
and the current state (which includes the superposed wave), 
respectively. We take the deformed state to be in static 
equilibrium so that x = x(X) and the total deformation 
gradient and Lagrange strain are 

F = ^ , E = ^ ( F r F - I ) . (1) 

The deformation gradient may be decomposed into elastic 
and plastic parts as [4, 5] 

F = F eF". (2) 

This decomposition has been used by Lee and his coworkers in 
their development of a finite deformation plasticity theory 
and has been discussed by Green and Naghdi [6] as it relates to 
their theory. In this regard, we recall that this decomposition 
is not unique since 

F = F eF", Fe = FcQ, F> = Q r F " (3) 

for all orthogonal Q. 
Elastic and plastic strains are defined as 

W = _ ( F ^ - I ) , E" = - (F^ rF" - I ) , (4) 

so that 

E = E" +¥pTEe¥'> (5) 

and we assume the free energy i/- to be a function of these 
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strains and a work-hardening parameter K. The constitutive 
equation for the symmetric Piola-Kirchoff stress S is given 
through \j/ as 

S = p0-
dE 

4,= >P(Ee,EP,K). (6) 

Since the decomposition of F is unique only up to the rotation 
Q, we have the condition that 

^(E",EP,K)=^(QEeQT,EP,\) (7) 

which requires that the free energy be an isotropic function in 
the elastic strain. 

Let us now examine the relation between the Cauchy stress 
T and the elastic portion of the motion. Recall that the 
Cauchy stress may be written in terms of the symmetric Piola-
Kirchoff stress as 

T = / - ' F S F r , 7=detF. (8) 

Using equations (5) and (6) this becomes 

T = p 0 / - » F e - ^ F e 7 ' . (9) 

If the plastic deformation is taken to be volume preserving, 
then det F = det Fe and the Cauchy stress is written in terms 
of the elastic deformation alone. 

Wave Propagation at Finite Deformation 

As indicated in the preceding section, the velocity ex
pressions sought will be obtained by considering an in-
fintesimal deformation superposed on a finite state of elastic-
plastic deformation. The position of a material point in this 
current state is given by 

x*=x + u(X,0- (10) 

In this analysis, only superposed motions that are elastic will 
be examined, the ultrasonic waves not being of sufficient 
magnitude to cause plastic loading. Under these cir
cumstances the quantities associated with the plastic part of 
the deformation are unchanged under the superposed motion, 
so that 

¥"*=¥P,W* = W,K* = K. (11) 

The quantities associated with the elastic part of the motion 
depend on the disturbance u, but since this is taken to be an 
infinitesimal deformation, all such quantities will be taken to 
be linear in u and its derivatives. 

The equation of motion for the disturbance is 

dT* 

"ax*" = p*u (12) 

where T* and p* are the Cauchy stress and mass density in the 
current state. The linearization of this equation (see [2] for 
example) involves expanding each of the starred quantities 
about the deformed state. The resulting equation in com
ponent form is 

duk 

where 

8 r duki 
dXj 

Qikl = pFjmf1nFlpn 
dH 

ape ape 

(13) 

(14) 

This expression for the equations of motion for the 
disturbance u is identical in form to that for a small defor
mation superposed on a finite elastic deformation. Further, 
the quantities in equation (13) are computed by taking 
derivatives of the strain energy with respect to the elastic 
strain. The plastic deformation is then seen to act primarily in 
the role of modifying the coefficients of the elastic strain. 

To obtain a characteristic equation from which the 
propagation velocities can be evaluated, the usual assump
tions made in developing an acoustoelastic theory are made 
here. These are that the finite deformation is homogenous and 
that the superposed disturbance has the form 

u = A e ' * ( n - x - F 0 , k = o>/V (15) 

which represents the motion of a plane wave propagating in 
the n direction with amplitude A, speed V, and frequency <a. 
Using this equation (13) leads to the characteristic equation 

det[(C&„ + Til5Jk)ninl-pVzl>jk] =0 . (16) 

This equation has the usual symmetry properties so that the 
eigenvalues, pV2, are real and the eigenvectors, Ak, are 
mutually orthogonal. 

Acoustoelastic Response 

We now propose a simple form for the strain energy which 
represents the constitutive relation for an isotropic material, 

i H a ^ + c ^ + M + f c / i ^ + l V a (17) 
where 

/ , =t rE e , 7 2 =trE e , / 3 =t rE e ' (18) 

and the a's and /3's are functions of the K and the invariants of 
E". 

To evaluate the acoustoelastic response we consider the case 
of a plane wave propagating along one of the principal 
directions of elastic deformation, taken to be the*] direction. 
The computation of velocities is carried out by evaluating the 
stiffness and stress terms in equation (16) through dif
ferentiation of \ji and noting that the elastic strain is suf
ficiently small that the velocities may be taken as linear in the 
strain. The velocities are found to be 

Po V\ = 2a, + 2a2 + (2a, + 6/3, + 2/32)££* 

+ (8a,+10a2+4/32+603 )Ef, 

Po y\ = «2 + (2«, + ft + - fc)E%k + 4a2Ef, 

+ 2a 2£! 2 - - f t£ f 3 

p0 V\ = a2 + (2a, + ft + - p3)Efck + 4a2£f, 

+ 2a, £' 2-^33 ' ;P3Ei (19) 

where Vx is the velocity of a longitudinal wave, and V2 and K3 

are the velocities of pure shear waves with particle motions in 
thex2 andx3 directions, respectively. 

We observe here that these equations are identical to those 
given by Hughes and Kelly [7] for elastic deformation if the 
parameters used here are identified with the Lame and 
Murnaghan constants as 

a, = X/2, a2 = /x 

/3, = (2/ -2m + «)/6, P2=m-n/2, fi3=n/3 (20) 

The parameters used in this work, the a's and /J's, were 
deliberately chosen as different symbols than the Lame and 
Murnaghan constants to emphasize that here the coefficients 
in the velocity expressions are functions of the plastic 
deformation. 

The most significant feature of this development is that 
when the coefficients are taken to be constants, the velocities 
may be directly related to the stress, be it active or residual. 
The corresponding expressions for acoustoelastic response in 
elastic-plastic bodies developed in [2] indicate a change in 
acoustoelastic response with plastic flow regardless of the 
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form taken by the coefficients. This undesirable aspect arises 
from the fact that in [2] the fundamental constitutive equation 
relates the strain to the sysmmetric Piola-Kirchoff stress while 
the equations of motion are written in terms of the Cauchy 
stress. Thus the plastic flow enters the velocity through the 
transformation between these measures of stress. In the 
present work, we were able to get an expression for the 
Cauchy stress in terms of the elastic strain, equation (9), so 
that we did not have to involve the plastic strain in the 
equations of motion. 
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Flexural Vibrations of Clamped Polygonal 
and Circular Plates Having Rectangular 
Orthotropy 

Y. Narita1 

Introduction 

In the present Note, a series-type method previously 
developed [1-3] is applied to the free vibration of clamped 
polygonal and circular plates having rectangular orthotropy, 
and the natural frequencies and mode shapes of these plates 
are calculated with good accuracy. The effects of varying the 
geometric and ortho tropic parameters on the vibration 
characteristics are examined in detail. 

Application of the Method 

As explained in references [1-3], frequency equations are 
obtained for plates of the desired shape by the appropriate 
location of some straight or curved clamping segments on the 
original plate. The major axes of the orthotropic material are 
taken to coincide with x, y axes in rectangular coordinates. 
Regular polygons have a finite number of geometrically 
symmetric axes and some of them coincide with the major 
axes of orthotropy. Vibration mode shapes in that case can be 
classified as symmetric mode or antisymmetric mode with 
respect to each axis. That is, two types of vibration modes (S-
type, and A-type) exist for pentagonal and septangular plates, 
and four types (SS-type, SA-type, AS-type, and AA-type) 

Table 1 Comparison of the fundamental frequency 
parameters it of isotropic polygonal plates 

Present method 

Shahady et al. [41 

Walkinshaw et al.[5] 

Laura et al. [6] 

12 

12 

11 

12 

.12 

.03 

.99 

.8 

11.67 

11.54 

11.53 

Table 2 Comparison of the lowest four frequency 
parameters fl of isotropic and orthotropic circular plates 

\ 

(a) Isotropic case 

Present method 

Exact values 

Asal [7] 

(b) Orthotropic case 

Present method 

Asai 17] 

[0,01 

10.23 

10.216 

10.22 

C D,/H=l 

10.59 

10.59 

[1,01 

21.25 

21.260 

21.22 

.469, D,/S'0 

20.09 

20.05 

[2,01 

34.97 

34.877 

— 
.735; 

[0,1] 

39.81 

39.771 

— 

— 

Table 3 Fundamental frequency parameters for orthotropic 
polygonal and circular plates clamped at the edges 

of sides 

5 

6 

7 

8 

CO 

( c i r c l e ) 

( 0 . 5 , 0 . 5 ) 

11.44 
(11.30) 

10.25 
(10.27) 

9.574 

9.276 

8.090 

(D»/ff, 

( 0 . 5 , 2) 

15.57 
(15.74) 

14.05 
(14.4) 

13.10 

12.73 

11.05 

0,/fl) 

( 2 ,0 .5 ) 

15.59 
(15.59) 

13.97 
(14.27) 

13.11 

12.73 

11.05 

( 2 , 2) 

19.14 
(19.10) 

17.15 
(17.33) 

16.04 

15.53 

13.51 
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1983; 

( ) : Values from r e f e r e n c e [6] 

exist for hexagonal and octagonal plates. The resulting 
frequency equations for the polygons take the same form as 
those given in reference [1] except for oimn. 

For the circular plate, elements of the frequency matrix are 
expressed as 

2 C'r/2 tnir nit 
I(mn ;=—\ sin (1 + cos </>)sin — (1 + sin <£)sin 2/0 d<t> 

a Jo 2 2 

""••' dr '""•' a2 L Jo 

x cos (1 +cos 4>)sm — (1 +sin 0)sin 2i<j> cos</> d<t> 

!

T/2 W 7 r fm "j 

sin (1 + cos</>)cos — (1 + sin0)sin2i<£ sin0 d<f> 
o 2 2 J 

where <j> is an angle of the line between a point on the circular 
boundary and the center of the circle. Definite integrals in the 
preceding equations are numerically evaluated by the Gauss-
Legendre quadrature with 24 points, while the integrals given 
in the case of polygons are exactly calculated [1], 
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form taken by the coefficients. This undesirable aspect arises 
from the fact that in [2] the fundamental constitutive equation 
relates the strain to the sysmmetric Piola-Kirchoff stress while 
the equations of motion are written in terms of the Cauchy 
stress. Thus the plastic flow enters the velocity through the 
transformation between these measures of stress. In the 
present work, we were able to get an expression for the 
Cauchy stress in terms of the elastic strain, equation (9), so 
that we did not have to involve the plastic strain in the 
equations of motion. 
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Flexural Vibrations of Clamped Polygonal 
and Circular Plates Having Rectangular 
Orthotropy 

Y. Narita1 

Introduction 

In the present Note, a series-type method previously 
developed [1-3] is applied to the free vibration of clamped 
polygonal and circular plates having rectangular orthotropy, 
and the natural frequencies and mode shapes of these plates 
are calculated with good accuracy. The effects of varying the 
geometric and ortho tropic parameters on the vibration 
characteristics are examined in detail. 

Application of the Method 

As explained in references [1-3], frequency equations are 
obtained for plates of the desired shape by the appropriate 
location of some straight or curved clamping segments on the 
original plate. The major axes of the orthotropic material are 
taken to coincide with x, y axes in rectangular coordinates. 
Regular polygons have a finite number of geometrically 
symmetric axes and some of them coincide with the major 
axes of orthotropy. Vibration mode shapes in that case can be 
classified as symmetric mode or antisymmetric mode with 
respect to each axis. That is, two types of vibration modes (S-
type, and A-type) exist for pentagonal and septangular plates, 
and four types (SS-type, SA-type, AS-type, and AA-type) 

Table 1 Comparison of the fundamental frequency 
parameters it of isotropic polygonal plates 
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1983; 

( ) : Values from r e f e r e n c e [6] 

exist for hexagonal and octagonal plates. The resulting 
frequency equations for the polygons take the same form as 
those given in reference [1] except for oimn. 

For the circular plate, elements of the frequency matrix are 
expressed as 

2 C'r/2 tnir nit 
I(mn ;=—\ sin (1 + cos </>)sin — (1 + sin <£)sin 2/0 d<t> 

a Jo 2 2 

""••' dr '""•' a2 L Jo 

x cos (1 +cos 4>)sm — (1 +sin 0)sin 2i<j> cos</> d<t> 

!

T/2 W 7 r fm "j 

sin (1 + cos</>)cos — (1 + sin0)sin2i<£ sin0 d<f> 
o 2 2 J 

where <j> is an angle of the line between a point on the circular 
boundary and the center of the circle. Definite integrals in the 
preceding equations are numerically evaluated by the Gauss-
Legendre quadrature with 24 points, while the integrals given 
in the case of polygons are exactly calculated [1], 
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(D*/H, rVH) 

MODE (0.5, 2) ( 1 , 1 ) ( 2,0,5) 

Fig. 1 Mode shapes of clamped hexagonal plates 

Table 4 Frequency parameters fi of orthotropic polygonal 
and circular plates for higher modes 

/ (D,/E,D,/H) 
Number / ^__ 

of s i d e s / ' * 
/ mode ( 0 . 5 , 0 . 5 ) ( 0 . 5 , 2) ( 2 , 0 . 5 ) ( 2 , 2) 

(A-l) 
(S-2) 
(S-3) 
(A-2) 
(S-4) 

(AS-1) 
(SA-1) 
(SS-2) 
(AA-1) 
(SS-3) 

(A-l) 
(S-2) 
(S-3) 
(A-2) 
(S-4) 

(AS-1) 
(SA-1) 
(SS-2) 
(AA-1) 
(SS-3) 

(AS-1) 
(SA-1) 
(SS-2) 
(AA-1) 
(SS-3) 

23.61 
23.60 
36.49 
39.81 
43.52 

21.24 
21.21 
33.08 
36.22 
39.42 

19.86 
19.89 
30.97 
34.03 
36.96 

19.26 
19.26 
30.15 
32.99 
35.91 

16.82 
16.82 
26.09 
28.97 
31.42 

26 
36 
42 
51 
64 

23 
33 
38 
45 
62 

22 
31 
35 
43 
56 

21 
30 
34 
42 
56 

19 
26 
30 
37 
48 

89 
33 
85 
65 
28 

88 
50 
82 
24 
27 

58 
08 
84 
75 
89 

81 
33 
93 
08 
39 

09 
22 
20 
21 
75 

36 
26 
42 
51 
61 

32 
24 
37 
48 
59 

31 
22 
35 
43 
57 

30 
21 
34 
42 
56 

26 
19 
30 
37 
48 

47 
87 
76 
61 
24 

76 
37 
84 
03 
83 

03 
58 
82 
62 
26 

33 
81 
93 
08 
39 

22 
09 
20 
21 
75 

39.53 
39.49 
65.71 
62.03 
72.96 

35.35 
35.73 
59.91 
56.04 
66.20 

33.29 
33.30 
56.30 
52.59 
61.99 

32.28 
32.28 
55.06 
50.69 
60.37 

28.06 
28.06 
47.31 
44.59 
52.48 
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Numerical Results and Discussions 

In the numerical calculations, frequency parameters were 
calculated by use of 15x15, 15x15, 14x14, and 12x12 
matrices for pentagonal, hexagonal, septangular, and oc
tagonal plates, respectively, and the terms of infinite series in 
m, n were truncated at the 40th term. Comparison is made in 
Table 1 with other results available for isotropic case. 
Nondimensional frequency parameters are expressed in the 
form of Q = wR1\lph/H, with R being the radius of circles 
circumscribing over the polygons. The present values agree 
well with those of Shahady et al. [4] and Walkinshaw et al. 
[5], but the values of reference [6] tend to be less accurate as 
the number of size is increased. 

Table 2 also presents the comparative study of the results 
for the circular plate in both isotropic and orthotropic cases. 
Here, a 10 x 10 matrix was used for the calculation, with m, n 
truncated at 60th term. The two integers in the bracket denote 
the number of nodal diameters and that of internal nodal 
circles. On the whole, good agreement is attained throughout 
the results in Tables 1 and 2. 

Table 3 presents the fundamental frequencies of the plates 
for four different combinations of the orthotropic parameters 
(Dx/H, Dy/H). The present values are again compared to 
those in reference [6], but their results for a septangular plate 
were eliminated because of the discrepancy of the same order 
as in the isotropic case. The frequency parameters for higher 
modes are given in Table 4. For the isotropic plates [1], the 
degeneracy of frequencies was found for AS-1 and SA-1 (or 
A-l and S-2), and AA-1 and SS-2 (or A-2 and S-3) modes. The 
orthotropic plates, however, discriminate those modes as 
different ones, due to the bending stiffnesses varying in 
directions. 

The effects of orthotropy on the mode shapes of the 
hexagonal plate are illustrated in Fig. 1, wherein the thick 
solid lines inside the boundary denote nodal lines, i.e., lines of 
zero deflection, and the thin lines are contour lines denoting 
deflections of 0.2, 0.4, 0.6, and 0.8 of the maximum 
deflection marked with a dot. The mode shapes of the 
isotropic plates are given in the middle column of the figure, 
and the bending rigidity in x direction is increased, as moving 
from left to right. It is clearly observed that not only the 
frequency values but the mode shapes are influenced by the 
presence of the orthotropy. 
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An Elastic Beam Contained in a Frictionless 
Channel1 

D. P. Vaillette2 and G. G. Adams3 

An infinitely long elastic beam, contained within a frictionless 
and rigid channel, is subjected to axially compressive forces. 
It is shown that the elastica theory predicts a maximum 
permissible axial force that can be supported. This critical 
force is expressed by a very simple relationship involving the 
flexural rigidity of the beam and the channel width. 

Introduction 

When a lightweight flexible material must be pushed 
through a narrow guideway, it is possible for the material to 
fold over on itself resulting in a mechanical " j am" of the 
device. Typical examples of this are the feeding of paper 
through a copier machine and the motion of film through a 
movie camera. Studies related to this problem were made by 
Benson [1,2] who treated the medium as a thin, incomplete, 
elastic ring and thus restricted his attention to the end region. 
In [1] the deformation and jam threshold were determined 
and in [2] a related stick/slip problem was studied using a 
perturbation analysis. 

In this investigation we determine the response of an in
finitely long elastic beam, contained within a frictionless and 
rigid channel, to axially compressive forces applied at each 
end (Fig. 1). The theory of the elastica is applied and a 
complete solution is obtained. In particular we find that there 
is a maximum permissible axial force that may be supported 
after which the beam collapses in the channel. 

Solution 

We consider this problem using the theory of the elastica 
which is well known and best described in Love [3] and Frisch-
Fay [4]. From symmetry, we need only consider a one-quarter 
cycle of the beam that corresponds to one-half of that portion 
of the beam between any two contact points. The result is the 
equivalent cantilever beam of curved length L (Fig. 2) sub
jected to an axial compressive force P and the unknown 
transverse force R which is equal to one-half of the reaction 
force 2R at each contact point of Fig. 1. Here we define Q as 
the resultant of P and R which act at an angle a, with respect 
to the horizontal (Fig. 2). The known deflection at the end of 
the cantilever beam is 5 which corresponds to one-half of the 
channel width. Furthermore a is the angle between the tangent 
at the free end and the horizontal. The moment curvature 
relation for the elastica becomes 

dd 
EI — =Q(d-y) cosai 

ds 
Q(l-x) s m a i (1) 

where d(s) is the angle made by the tangent to the curve and 
the horizontal, and s is the arc length coordinate. The 
boundary conditions are 

0(O) = O, d(L)=a, 6'(L)=0, y(L)=8. (2) 
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Fig. 1 An infinite beam in a frictionless and rigid channel subjected to 
axially compressive loads P at each end 

Fig. 2 An equivalent cantilever beam 
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Fig. 3 Dimensionless load (6k) versus angles a and «-| 

In the elastica theory it is necessary to distinguish between the 
curved length L and the horizontal length /. 

Using the results obtained in [4, section 2.6] or [5], and 
omitting the details for brevity we obtain 

Lk = \fcos<^l[K(p)~F(p,(l>)], kvJPlEl (3) 

p = s in(^), 0 = s i n - > [ s i n ( - | ) / p ] (4) 

where K{p) and F(p,<f>) are, respectively, the complete and 
incomplete elliptic integrals of the first kind given by 

dct> 
K(p)=F(p,-K/2), F(p,4>)=\jg 

'1 -p2sin2(j) 
Imposing the restriction on the vertical deflection gives 

Sk^lktancii + Ipcos^/^fcosa-i 

and relating / to L finally yields 

(5) 

(6) 

(7) (JL + /)A: = 2Vcosr71 [E(p)-E(pM, 

where E(p), E(p,<j>) are, respectively, the complete and in
complete elliptic integrals of the second kind defined by 

E(p)=E(p,ir/2), E(p,4,)=\jo^l-p2sin2 
(j>d<j). (8) 

Solving for Lk in (3) and Ik in (6), then substituting these 
expressions into (7), we eventually obtain 
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Fig. 5 Beam displacement shapes for various values of the dimen
sionless load (Sk) 

8k = Vcos«i \2pcosa\COs4>-[K(p) — F(p,<t>)]sina1 

+ 2[E(p)-E(p,<j>)]sma1}. (9) 
With 0 known explicitly by (4)2, we observe that (9) has the 
two unknowns at and p. 

The restriction that the channel reaction be non-negative 
leads to 

(10) 

(11) 

a ,>0 

and the curvature requirement yields 

tan«! <8/l 

which can be simplified with the aid of (6) to 

a > 2 a [ (12) 

From (10) and (12) it follows that any solution will have the 
Euler buckling load as a lower bound and a solution with 
vanishing curvature at the fixed end as its upper bound. A 
load greater than the Euler buckling load is possible only with 
the transverse force R in the opposite direction of the 
"buckled" configuration (Fig. 2). 

Any p and a, satisfying (9), subject to (10) and (12) will 
yield a solution satisfying equilibrium. However, the actual/?, 
«! combination is taken as that which will minimize the total 
potential energy of the system. 

Notice that the beam having the minimum energy of any 
configuration in Fig. 2 is not necessarily that which minimizes 
the energy for the entire system; this is because the length of 
the beam is a variable and different lengths will correspond to 
a different number of cycles fitting into a given fixed length of 
beam. We therefore find the energy per unit length 

which, in dimensionless form becomes 

(13) 

U/PL 
r 2(1 +cos2ai)[ii(p) —E(p,4>)] -pcos(j>s'm2al 

= <- K(p) -F(p,4>) 

- (cos 2 ai +cosa! -2p2 +2)! /cose «i (14) 

after using (1) and integrating. Summarizing, for a given 
value of the load parameter (8k), we find the complete range 
of the admissible ai ,p combinations from (9), (10), and (12), 
and then use (14) to find the solution with the minimum 
energy. 

Results and Discussion 

Having determined at and p for given 8k, we can now 
calculate Lk from (3), a from (4),, and Ik from (7). In Fig. 3 
we show a graph of 8k versus a and c^, and in Fig. 4 we 
display a graph L/8, 1/8 versus 8k. Notice that solutions are 
obtained only for S/c< 1.585 (P<2.512 EI/82). Hence we 
conclude that for greater values of the dimensionless load 
(8k> 1.585) the beam becomes unstable and "folds over" on 
itself. We note that a solution has also been obtained using the 
linear theory which predicted that the beam could support an 
infinite force [5]. Although the elastica usually gives stiffer 
results, that was not the case in this problem because the 
elastica makes a distinction between the horizontal length and 
the curved length of the beam. Whereas the linear theory 
allowed the length of the beam (Fig. 2) to shrink to zero 
supporting an infinite force, the curved length L cannot 
shrink to zero and only a finite force can be sustained. Finally 
in Fig. 5 we show the deflected shape of the beam for various 
values of 8k. 
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Constraint to Side Flow in Plates 

J. Liss,1 W. Goldsmith,1 and F. E. Hauser1 

An experimental program was conducted to determine the 
increase inflow stress relative to simple uniaxial compression 
for 2024-0 aluminum plates subjected to symmetric quasi-
static compression by steel punches and to dynamic com
pression using the Kolsky (split Hopkinson-bar) technique. 
An average constraint factor of 2 was determined ex
perimentally for a ratio of specimen thickness to bar diameter 
of 0.5 for the quasi-static case. This correlated well with the 
value predicted theoretically. Under dynamic conditions the 
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With 0 known explicitly by (4)2, we observe that (9) has the 
two unknowns at and p. 

The restriction that the channel reaction be non-negative 
leads to 

(10) 

(11) 

a ,>0 

and the curvature requirement yields 

tan«! <8/l 

which can be simplified with the aid of (6) to 

a > 2 a [ (12) 

From (10) and (12) it follows that any solution will have the 
Euler buckling load as a lower bound and a solution with 
vanishing curvature at the fixed end as its upper bound. A 
load greater than the Euler buckling load is possible only with 
the transverse force R in the opposite direction of the 
"buckled" configuration (Fig. 2). 

Any p and a, satisfying (9), subject to (10) and (12) will 
yield a solution satisfying equilibrium. However, the actual/?, 
«! combination is taken as that which will minimize the total 
potential energy of the system. 

Notice that the beam having the minimum energy of any 
configuration in Fig. 2 is not necessarily that which minimizes 
the energy for the entire system; this is because the length of 
the beam is a variable and different lengths will correspond to 
a different number of cycles fitting into a given fixed length of 
beam. We therefore find the energy per unit length 
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after using (1) and integrating. Summarizing, for a given 
value of the load parameter (8k), we find the complete range 
of the admissible ai ,p combinations from (9), (10), and (12), 
and then use (14) to find the solution with the minimum 
energy. 

Results and Discussion 

Having determined at and p for given 8k, we can now 
calculate Lk from (3), a from (4),, and Ik from (7). In Fig. 3 
we show a graph of 8k versus a and c^, and in Fig. 4 we 
display a graph L/8, 1/8 versus 8k. Notice that solutions are 
obtained only for S/c< 1.585 (P<2.512 EI/82). Hence we 
conclude that for greater values of the dimensionless load 
(8k> 1.585) the beam becomes unstable and "folds over" on 
itself. We note that a solution has also been obtained using the 
linear theory which predicted that the beam could support an 
infinite force [5]. Although the elastica usually gives stiffer 
results, that was not the case in this problem because the 
elastica makes a distinction between the horizontal length and 
the curved length of the beam. Whereas the linear theory 
allowed the length of the beam (Fig. 2) to shrink to zero 
supporting an infinite force, the curved length L cannot 
shrink to zero and only a finite force can be sustained. Finally 
in Fig. 5 we show the deflected shape of the beam for various 
values of 8k. 
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Constraint to Side Flow in Plates 

J. Liss,1 W. Goldsmith,1 and F. E. Hauser1 

An experimental program was conducted to determine the 
increase inflow stress relative to simple uniaxial compression 
for 2024-0 aluminum plates subjected to symmetric quasi-
static compression by steel punches and to dynamic com
pression using the Kolsky (split Hopkinson-bar) technique. 
An average constraint factor of 2 was determined ex
perimentally for a ratio of specimen thickness to bar diameter 
of 0.5 for the quasi-static case. This correlated well with the 
value predicted theoretically. Under dynamic conditions the 
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Fig. 2 True stress as a function of engineering strain for quasi-
statically compressed simple and constrained specimens 

constraint factor at yield stress was found to be slightly lower 
at a value of 1.75 and appeared to be nearly independent of 
strain rate over the test range from 103 to 1.5 x 104s~'. 

Introduction 
It has been recognized for many years that an increase of 

pressure beyond the uniaxial yield strength is required to 
cause plastic deformation of metallic blocks when the 
specimen is subjected to indentation by flat or hemispherical 
punches. Theoretical investigations of this phenomenon have 
shown that the necessary pressures under these conditions 
range from about 2.6 Y to 3 Y, where Fis the yield strength in 
simple tension or compression, and this apparent strength 
increase has been substantiated experimentally [1]. The effect 
is attributed to the prevention of side flow by the undeformed 
portion of the block that gives rise to a hydrostatic stress 
component. This type of constraint is also present in the 
penetration and perforation of plates by projectiles. 

To the authors' knowledge, no exact theory of continuum 
mechanics describing the stress distribution in the plastic zone 
produced by impact loading constrained by an outer elastic 
annulus has been developed to date. Constraint to side flow 
was considered by Woodward and De Morton [2, 3]; the first 
reference extended an analysis of the uniaxial compression of 
a die in the presence of friction by Johnson [4] to the sym
metrical compression of a plate by two flat-ended cylinders. 
The resultant constraint factor was in reasonable agreement 
with the average value of static data. Reference [3] is con
cerned with the deformation of the plate and the projectile. 
The present approach involves both static and dynamic tests 

PRESENT TEST: D = 12.5mm 
WOODWARD AND DE MORTON : h = 6.35mm 

D = 6.23mm 

h '1.27mm 

J_ 
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Fig. 3 Constraint factor K as a function of engineering strain for 
various specimen thicknesses h. Data from reference [2] represented by 
a dashed line 
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Fig. 4 Quasi-static contraint factor as a function of the ratio of 
specimen thickness to penetrator diameter for values of engineering 
strain of 0.3 and 0.5 

for the determination of constraint factors and a comparison 
of the experimental information with predictions based on a 
simplified analysis. The effects of friction are neglected here 
since its influence cannot be independently measured. Fric-
tional effects have been shown to be small and have generally 
been disregarded in problems involving ballistic penetration 
[5]. 

As indicated in reference [2] and shown in greater detail in 
reference [6], to plastically deform a soft plate between hard 
cylindrical punches, the axial stress must be twice the uniaxial 
yield strength Y leading to a constraint factor K = 2. This 
evaluation is based on the following assumptions: con
servation of volume (neglecting elastic strains), continuity of 
the radial stresses across the boundary of the compressed zone 
in the plate, and discontinuity of the axial stresses across this 
boundary, the value of the axial stress in the region outside of 
the punch being zero. 

Experiments 
Two types of quasi-static experiments were conducted on a 

Tinius-Olson Universal Testing machine: (/) simple uniaxial 
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compression of cylindrical specimens and (if) constrained 
symmetrical compression of flat plates. All specimens con
sisted of 2024-0 aluminum alloy with a nominal Brinell 
hardness of 47; both the uniaxial specimens and the hardened 
steel cylinders utilized to compress the plates were 12.5 mm in 
diameter. The samples had initial thicknesses of 1.3, 3.8, 5.8, 
and 12.7 mm, respectively. Loads up to 360 kN were applied 
to the specimens at crosshead speeds ranging from 0.5 to 2.5 
mm/min by means of two smooth dry parallel steel plates. 

The same two types of tests were conducted dynamically 
using a Kolsky (split Hopkinson-bar) technique. A schematic 
of the arrangement is shown in Fig. 1. The arrangement 
consisted of a striker bar, an incident bar, a transmitting bar, 
and a throw-off bar, all 6.35 mm (1/4 in.) diameter and made 
from Ti-6Al-6V-2Sn alloy having a yield strength of 1.07 
GPa. The striker bar had a length of 508 mm, while the other 
bars were each 558 mm long. The specimen was sandwiched 
between the incident and transmitting bars. Two 120 fi 
longitudinal foil strain gages with nominal gage lengths of 
1.59 mm (1/16 in.) and gage factors of 2.08 were mounted 
opposite each other at stations 101 mm (4 in.) from the 
specimen interface on each of these bars. The strain gage 
outputs were digitized, stored, and recorded in a two-channel 
digital oscilloscope with sampling rates as fast as 50 nsec per 
point. Each channel cold store 2048 consecutive data points. 

Both cylindrical and plate specimens composed of 2024-0 
aluminum were employed in the dynamic tests. The cylinders 
for the uniaxial compression tests were 6.35 mm in diameter 
with thicknesses of 1.23 and 3.17 mm. The plates had a 119 
mm diameter with thicknesses of 0.5 and 1.24 mm. A 
pneumatic gun propelled the striker bar at speeds from 9 to 
about 30 m/s; the velocity was determined from the signal 
amplitude at the incident bar strain gages. 

Results and Discussion 
(a) Quasi-Static Tests. Initial and final specimen 

dimensions as well as load-deflection histories were recorded. 
Typical true stress-engineering strain curves for simple and 
constrained quasi-static compression are plotted in Fig. 2. The 
constraint factor K, defined as the ratio of the constrained to 
the uniaxial unconstrained true stress at the same strain, is 
shown in Fig. 3 as a function of engineering strain for various 

initial specimen thicknesses. This diagram shows a minimum 
constraint value when the ratio of specimen height h to punch 
diameter D is about one-half. For a value of unity of h/D, the 
present results are in reasonable agreement with those in 
reference [2] where a cold-rolled commercial aluminum was 
tested. A cross-plot for two values of engineering strain is 
shown in Fig. 4. The constraint factor varies substantially 
both with strain and h/D ratio in a manner not consistent with 
the currently available simple analysis. This behavior is at
tributed to the combined effects of the friction present bet
ween the specimen and the loading surfaces and nonuniform 
stress distribution in the thickness direction. 

As seen in Fig. 4, a minimum value of the constraint factor 
K — = 2 which corresponds to the value predicted by the 
simple analysis was determined experimentally at a strain of 
about 0.3 and h/D = 0.5. As the h/D ratio increases toward 
unity, the constraint factor tends toward 3 which is the 
theoretical value for a semi-infinite solid [1,4]. 

Figure 5, which shows the variation of K with engineering 
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Test 
NO. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Specimen 
Type 

C+ 

C 

c 

c 

c 

pX 

p 

p 

p 

p 

Table 1 Summary of dynamic tests 

Specimen 
Thickness, 

iron 

3.17 

3.17 

1 .23 

3.17 

1 .23 

1 .24 

1 .24 

1 .24 

0.49 

0.50 

S t r i ke r 
Veloc i ty , 

m/s 

9.3 

11.3 

11 .8 

19.7 

20.6 

11.7 

15.0 

20.3 

20.7 

29.3 

Incident 
Stress, 

MPa 

206.6 

249.9 

261 .4 

436.5 

456.1 

269.9 

333.2 

449.9 

459.3 

649.9 

Yield 
Stress, 

MPa 

126.6 

136.6 

190.5 

213.2 

286.6 

226.6 

276.6 

366.6 

409.9 

566.5 

Relative 
Veloci ty a t 
Y ie l d , m/s 

7.2 

10.2 

6.3 

20.1 

15.3 

3.0 

5.1 

7.5 

7.0 

7.5 

St ra in 
Rate, 

2280 

3220 

5110 

6360 

12440 

2430 

4110 

6050 

9120 

14820 

+ C - Cylinderical Specimen 
x P - Plate Specimen 
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TRANSMITTED 
STRESS 

t, TIME 
Fig. 6 Typical incident and transmitted strain records for the con
strained specimens subjected to a Kolsky (split Hopkinson-bar) loading 
technique (run no. 8). Specimen thickness: 1.24 mm. The insert shows 
the enlarged yield zone. 

0.6 r-
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Q_ 

to 0.4 

a. 
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0.3 
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5 
< 
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STRAINED 

e , STRAIN RATE, I 0 3 s"1 

Fig. 7 Simple and constrained dynamic yield stress as a function of 
strain rate for specimens from 0.5-3.2 mm thick 

strain for a specimen thickness to diameter ratio of 0.5, in
dicates that the average experimental value for this parameter 
is 2, with a maximum deviation of 13 percent for the strain 
range from 0.08 to 0.65. The corresponding values cited by 
reference [2] for the constraint factor in cold-rolled aluminum 
with h/D = 1 ranged from 1.9 to 2.8 as the strain increased 
from 3 to 50 percent. No variations in specimen thickness 
were reported in those test results. 

(b) Dynamic Tests. The data analysis for the dynamic 
tests assumes that the transients produced on both sides of the 
test specimens propagate uniaxially without attenuation or 
dispersion along the elastic incident and transmitting bars. 

< a. 
i -
V) 
z 
o 

2.0 

1.5 

1.0 J _ _L_ J _ 
15 0 5 10 

e , STRAIN RATE , I 0 3 s"' 

Fig. 8 Dynamic constraint factor at the yield stress as a function of 
strain rate for thin specimens 

The stress and particle velocity conditions at the specimen 
interfaces can then be determined from the measurements at 
the strain gage locations. For a sufficiently thin test specimen, 
the elastic stress wave transit time is small (< 1/̂ s) compared 
to the test duration; dynamic equlibrium is established in a 
short period compared to the test duration (=100 jts), and 
plastic deformation can be assumed to take place uniformly 
throughout the specimen. 

For the present tests, where the deformed sample area is the 
same as the cross-sectional areas of the adjacent bars, the 
average stress and strain rates in the specimen are given by 

and 

(javg = l / 2 [(>,• + a , ) +a,] 

e = [{a,-ar)-at\/pc0h 

(1) 

(2) 

where a is stress, subscripts j , r, and t refer to incident, 
reflected, and transmitted waves, p is the unit mass, c0 the 
wave speed (pc0 is the acoustic impedance) of the bar 
material, and h the specimen thickness. These relations are 
approximate as the direct shear applied at the periphery of the 
incident bar within the plate specimen is expected to cause a 
difference in stress on opposite sides and thus affect the 
uniformity of the deformation. The frictional constraint 
between specimen and bars is assumed to be small compared 
to the lateral flow constraint due to the surrounding material 
in the plate samples. 

Table 1 presents a summary of the results obtained on five 
specimens for each type of dynamic test. Figure 6 shows the 
strain gage records for the incident and transmitted stresses 
with the yield zone enlarged for the plate specimen, run no. 8. 
The slight difference in the stress levels on opposite sides of 
the specimen is due to the peripheral shear on the incident side 
as indicated in the foregoing. This difference became in
significant when the plate thickness was reduced to the 
minimum utilized in the present tests. 

The transmitted stress is considered to represent the 
homogeneous stress in the test sample. No simple procedure 
exists in the present dynamic experiments to optimize the 
specimen thickness to minimize the factors influencing 
nonhomogeneous stress distribution as was effected in the 
quasi-static case. Attempts to reduce the effects of friction 
under dynamic loading conditions have resulted in the 
ejection of lubricants at the interfaces, leading to spurious 
apparent values of measured strain. However, the influence 
of dynamic friction is expected to be smaller than in the static 
case and may approach negligible proportions under ballistic 
conditions [3]. 

Figure 7 shows the results for the simple uniaxial and for 
the constrained dynamic yield strength as a function of strain 
rate, and Fig. 8 shows the variation of the dynamic constraint 
factor at the yield stress level. The latter was found to vary 
between 1.7 and 1.8 for the strain rate range from quasi-static 
to 1.5 x 104s~' where the former was extrapolated to the 
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yield strain from Fig. 3. In this domain, the influence of the 
loading rate appears to be negligible. 

Conclusions 
The present tests indicate that a constraint factor to side 

flow (the ratio of flow stress in a plate loaded by a flat punch 
to that of a simple compression specimen) in a 2024-0 
aluminum plate under quasi-static conditions may be taken as 
2 ± 10 percent for ratios of plate thickness to punch diameter 
of 0.5. This minimum value is in good correspondence with 
the predictions of a simple theory. Corresponding dynamic 
tests using a Kolsky (split Hopkinson-bar) technique provide a 
lower value of the contraint factor of 1.75 ± 5 percent at the 
yield strain over the strain rate range from quasi-static to 1.5 
x 104s~' indicating a slightly smaller influence of friction 
and h/D ratio at low strain values. In consequence, a con
straint factor of 2 appears to be a good approximation for the 
augmentation of the yield stress under conditions of lateral 
constraint regardless of loading rate or specimen geometry. 
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I Axisymmetric Elastic Waves Excited by a 
I Point Source in a Plate1 

J. R. Hutchinson.2 Drs. Weaver and Pao are to be 
congratulated for a very thorough study of the elastic waves 
emanating from a transverse step load on the surface of an 
elastic plate. The purpose of this discussion is threefold: first, 
to make the reader aware of a much more simplistic approach 
taken by the discusser in a recent paper [1]; second, to 
compared this simplistic approach with the more precise 
approach of Weaver and Pao, and to point out both 
similarities and differences in the solution; and third, to 
suggest that perhaps consideration of even higher thickness 
modes might be of interest. 

In reference [1] the same problem as treated by Weaver and 
Pao was considered. The approach used was to expand the 
solution in terms of the normal modes found by using 
Mindlin's plate theory. Instead of considering the radius 
approaching infinity, as Weaver and Pao did, the radius of 
the plate was chosen as just large enough so that for the points 
considered and for the time intervals of interest the wave 
would not have time to be reflected back from the boundary 
to the point considered. The transverse displacement response 
was found for both a step load and an impulsive load in 
dimensionless form. Because of the simplicity of the solution 
it was easy to solve the problem for the specific dimensions 
and physical properties used by Weaver and Pao. Results of 
this solution are shown in Figs. 1 and 2. 

<; -0.5 -

< 
H: -1.5 -

-2.0 

15 30 45 

TIME (microseconds) 

Fig. 1 Transverse displacement at a radius of 10 cm 

By R. L. Weaver and Y. H. Pao and published in the December, 1982 issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 49, pp. 821-836. 

Civil Engineering Department, 
95616. 

University of California, Davis, Calif. 

50 100 150 " 200 250 300 

TIME (microseconds) 

Fig. 2 Transverse displacement at a radius of 40 times the thickness 
(r = 80h) 

The first thing to notice is that if Fig. 1 were inverted then 
both Figs. 1 and 2 would be almost identical in overall shape 
to Weaver and Pao's Figs. 8(a) and 10(a), respectively. The 
reason for the inversion on Fig. 1 is that I took my force as 
upward (in the same direction as positive transverse 
displacement) whereas Weaver and Pao took the force 
downward; however, by the same reasoning, Fig. 2 should 
also be inverted from Weaver and Pao's, which it is not. The 
second major discrepancy is in the magnitude of the response. 
My displacements are about two and half times smaller than 
those reported by Weaver and Pao. 

The difference in sign and amplitude are too large to be 
ascribed to differences in solution methods, particularly when 
the solutions match in other important aspects. The simplicity 
of the method used in reference [1] also allows a very simple 
check on the accuracy of the modal superposition. The 
boundary conditions on the (finite) plate in reference [1] were 
clamped. Use of modal superposition of the particular 
solution of the modal equations of motion should, therefore, 
lead to the static solution for a clamped centrally loaded 
circular plate. This modal superposition check was performed 
and gave answers that were within three significant figures of 
the static solution as given on p. 69 of reference [2]. Unless I 
am misreading their physical and geometric properties I 
would have to conclude that Weaver and Pao have made some 
minor numerical error in their analysis which accounts for the 
sign and amplitude differences. 

Journal of Applied Mechanics SEPTEMBER 1983, Vol. 50/699 

Copyright © 1983 by ASME
Downloaded 02 May 2010 to 171.66.16.250. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



DISCUSSION 

Other differences to note are that the simple solution is 
incapable of showing the spike caused by the Rayleigh surface 
wave on the upper surface. The simple solution in fact looks 
more similar to the response found by Weaver and Pao using 
only the first antisymmetric branch shown in their Fig. 7(a). 
There is no doubt that their solution contains many 
refinements that the simple solution cannot possibly show. 

In reference [3] axial wave propagation in a circular rod due 
to laser deposition was studied. It was found that whereas an 
approach similar to that used in reference [1] yielded results 
that matched the gross behavior extremely well, certain details 
were not adequately represented without consideration of the 
higher thickness modes of the elasticity solution. It was found 
for instance that modes above the forty-fifth showed group 
velocities that approached the dilatational velocity and 
further had a large component of plane-type behavior. Thus 
these very high thickness modes were able to explain the 
experimentally observed waves that arrived at the dilatational 
velocity. Those results would indicate that there might also be 
something to be learned by investigation of the higher 
thickness modes in a plate (Weaver and Pao stopped at the 
tenth thickness mode). 

In this brief discussion it has not been my purpose to 
denigrate the excellent work done by Weaver and Pao. Their 
investigation goes far beyond the simplistic approach of 
reference [1] and their response curves show the refinements 
brought about by the inclusion of many thickness modes. It 
has only been my purpose to show that the simpler approach 
is capable of describing the gross response of the plate, and to 
comment that further study of higher thickness modes might 
also prove fruitful. 
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Authors' Closure 

The authors thank Dr. Hutchinson for his comments and 
for his careful comparison of the plate response determined 
from Mindlin's theory of a moderately thick plate and that 
from the Rayleigh-Lamb theory of a plate with arbitrary 
thickness. 

In the preprint version of the authors' paper a factor of TT 
was missing from the denominator of equation (7.1). This 
error and its ramifications were corrected in the published and 
reprint versions. The discrepancies in magnitude are explained 
if Dr. Hutchinson has made his comparisons with the early 
version. He is undoubtedly correct in pointing out the sign 
error in Figs. 10. The authors regret the confusion. 

Investigation of higher modes is needed if one is interested 
in the high frequency response of the plate. In that case, and 
in the near field and at early times, the method of generalized 
ray is more effective. Based on that method, Ceranoglu and 
Pao (reference [12] in authors' paper) showed that the earliest 
arrived signal indeed travels with the speed of dilatational 
wave. The amplitude of these early arrivals, however, is much 
less than that of the later signals. 

But if the interest is in the far field and with the highest 
frequency details of the earliest arrivals, a normal mode 
expansion of far more than 10 branches, as suggested by Dr. 
Hutchinson, would probably be necessary. One might con
jecture however, that there exist asymptotically valid closed 
expressions for the earliest arrivals in the far field. A normal 
mode expansion of hundreds of branches would be very time-
consuming and possibly prone to round-off errors. 
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Mechanics of Solids With Applications to Thin Bodies. By G. 
Wempner. Martinus Nijhoff, 1982. 633 Pages. Price $79.00. 

REVIEWED BY T. J. LARDNER1 

This book was originally published by McGraw-Hill in 1973 
and it has, I believe, stood the test of time well; I have had 
many occasions to refer to different sections in the book 
during the past nine years. A review of the book appeared in 
Applied Mechanics Reviews (AMR, Review No. 10535, 1976) 
and this reviewer agrees with the conclusions of the AMR 
review. 

The principal goal of the book, according to the author 
" . . . is to build a bridge between the most fundamental 
concepts of continuous media and the practical theories of 
structures. Foundations are laid with a view toward their 
eventual role in the analysis of flexible bodies." This bridge at 
times appears strange when fundamental relations are derived 
and then applied to a simple structure; the reader new to solid 
mechanics may wonder if the formulation might be easier by 
direct approaches to the simple structure. Of course, easier 
methods do exist but the author stresses the importance of the 
general approach in his discussion. Further he does emphasize 
that the book " . . . i s intended for engineers interested in the 
applied mechanics of solids." Chapter titles and a brief 
outline of some of them follows: 

1. Introduction. A review of notation to be used in the 
book. 

2. Deformation. The basic kinematic results for the 
deformation of a continuous solid are derived. 

3. Stress. The basic concepts of internal forces are 
presented. 

4. Behavior of Materials. The general theory of 
elasticity, the incremental theory of plasticity, and the linear 
theory of viscoelasticity are developed. 

5. Linear Theories of Isotropic Elasticity and 
Viscoelasticity. 

6. Extension, Flexure, and Torsion of Rods. 
1. Elastic Plates. 
8. Mechanics of Curved Rods. A useful chapter con

taining a number of results. 
9. Energy Principles. 

10. Curvilinear Coordinates. 
10. Differential Geometry of a Surface. 
12. Theory of Shells. 

As can be seen from the chapter titles, the book covers a 
wide range of topics in the mechanics of solids. The 
derivations are carefully presented and clear. References up to 
the time of the original publication provide sources to the 
original works on a number of topics. This is a useful 

Professor, Department of Civil Engineering, University of Massachusetts, 
Amherst, Mass. 01003. 

reference book and can be used effectively for an introductory 
graduate course in solid mechanics. 

Wave Propagation in Viscoelastic Media. Edited by F. 
Mainardi. Pitman Publishing, Marshfield, Mass. 272 Pages. 
Price $25.00. 

REVIEWED BY T. C. T. TING2 

This book is Volume 52 of Research Notes in Mathematics 
which contains 11 articles by lecturers who took part at the 
Euromech Colloquium 127 on "Wave Propagation in 
Viscoelastic Media," held at Taormina (Sicily, Italy) in April, 
1980. 

The authors and the titles of the articles are as follows: D. 
Graffi, "Mathematical models and waves in linear 
viscoelasticity," M. Hayes, "Viscoelastic plane waves," S. 
Zahorski, "Properties of transverse and longitudinal har
monic waves," L. Brun and A. Molinari, "Transient linear 
and weakly nonlinear viscoelastic waves," A. Jeffrey and J. 
Engelbrecht, "Waves in nonlinear relaxing media," T. B. 
Moodie, R. J. Tait, and J. B. Haddow, "Waves in compliant 
tubes," E. Strick, "Applications of linear viscoelasticity to 
seismic wave propagation," E. A. Trautenberg, K. Gebauer, 
and A. Sachs, "Numerical simulation of wave propagation in 
viscoelastic media with nonreflecting boundary," J. L. 
Sackman, "Prediction and identification in viscoelastic wave 
propagation," G. C. Gaunaurd, W. Madigosky, H. Uberall, 
and L. R. Dragonette, "Inverse scattering and the response of 
viscoelastic and electromagnetic waves," and J. Brilla, 
"generalized variational principles and methods in dynamic 
viscoelasticity." 

The problems of wave propagation in viscoelastic media are 
much more difficult to analyze than the associated problems 
in elastic media because of the history dependence nature of 
the stress-strain laws. The governing equations are in general 
in the form of integro-differential equations if the stress-
strain laws are written in an integral form. If they are written 
in a differential form, one can obtain the governing equations 
in the form of differential equations but they are usually of 
higher order than the equations for elastic waves. Therefore, 
with few exceptions, only linear or one-dimensional problems 
can be treated analytically. This is reflected in this book in 
which most articles are concerned with linear and/or one-
dimensional problems. With the exception of the article by 
Zahorsky, which deals with viscoelastic fluids and the article 
by Jeffrey and Engelbrecht, which discusses both fluids and 
solids, the articles deal with waves in viscoelastic solids. 
Moodie, Tait, and Haddow consider the wave propagation in 

Professor of Applied Mechanics, Department of Civil Engineering, 
Mechanics, and Metallurgy, University of Illinois at Chicago, Chicago, 111. 
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BOOK REVIEWS 

a fluid-filled tube in which the tube can be elastic or 
viscoelastic but the fluid is assumed to be incompressible and 
inviscid. All articles are very mathematically and analytically 
oriented. Nevertheless, the articles cover a fairly wide range of 
wave propagation phenomena in viscoelastic media. In view 
of the fact that there are not many books available on 
viscoelasticity and even fewer on wave propagation in 
viscoelastic media, the appearance of this volume is welcome. 
It would serve as a useful reference for those who want to 
venture into this field. 

Plane-Strain Slip-Line Fields for Metal-Deformation 
Processes. By. W. Johnson, R. Sowerby, and R. D. Venter. 
Pergamon Press, New York, 1982. 364 Pages. Price $45.00. 

REVIEWED BY S. KOBAYASHI3 

This monograph comprises the previous one Plane-Strain 
Slip-Line Fields: Theory and Bibliography, published by 
Edward Arnold in 1970, describes most of the advances in the 
field developed during the last decade, and includes references 
to many new papers which give results in specific problems. 

The Introduction begins with a historical note on plane-
strain slip-line fields, followed by a list of physical ob
servations in working metal. In Chapter 2 certain basic 
aspects of the plasticity theory that are necessary for the 
development of the methods of solution of the two-
dimensional problems are presented. Chapter 3 is concerned 
with the governing equations of the plane plastic flow of a 
rigid-perfectly plastic solid, and their solution method. It 
contains the method of characteristics, properties of slip-line 
net, hodograph, and the discussion on a complete solution. In 
Chapter 4 a number of boundary value problems are 
examined to show how solutions may be developed by a 
straightforward step-by-step procedure. Construction of slip-
line fields, stress boundary conditions, and construction of 
hodographs are discussed. While Chapters 2, 3, and 4 have 
dealt with basic plasticity theory, Chapter 5 is devoted to the 
application of the theory to specific problems of plane plastic 
flow. Slip-line solutions to many metal deformation processes 
are presented. They include pressure vessels, compression, 
indentation, cutting, sheet drawing, extrusion, piercing, 
forging, machining, swaging, notched bar tension, bending, 
rolling, and blanking. The discussion is extended to the ap
plication of slip-line fields in the area of crack initiation and 
fracture. More than 500 references are listed in this chapter 
alone. In Chapter 6 a numerical computational procedure 
which is referred to as the matrix-operation method is 
presented in detail. The method was developed recently, and 
greatly facilitates the solution to problems of the indirect type 
where there are insufficient known starting conditions for the 
determination of the slip-line field (or hodograph). The 
procedure is based on a power series representation of the 
solution to the governing equations and a vector represen
tation of slip-lines and a system of matrix operators. This 
chapter contains mathematical formulations for the 
procedure, matrix operator subroutines, and solution of 
direct-type and indirect-type problems. The final chapter is 
concerned with the plasticity problems for other than 
isotropic rigid-perfectly plastic materials under plane-strain 
conditions. The method of characteristics is described for 
plane stress and axisymmetric problems, and for materials 
such as clay, ice, and soils. Slip-line fields for anisotropic 
materials are given, and the problems of minimum weight 

3 Professor, Department of Mechanical Engineering, University of 
California, Berkeley, Calif. 94720. Fellow ASME 

frames, plastic bending of plates and the force-plane diagram 
for slip-line fields are shown as analogies with metal-forming 
operations. 

This book is the most complete source book on the subject 
and contains the references in each chapter, totaling almost 
900 references. The book indeed provides teachers and 
researchers with basic material and a bibliography of papers 
on the theory and application of plane-strain slip-line fields to 
metal deformation processes. 

Impact Dynamics. By J. A. Zukas, T. Nicholas, H. F. Swift, 
L. B. Greszczuk, and D. R. Curran. Wiley, New York, 1982. 
452 Pages. Price $47.50. 

REVIEWED BY L. E. MALVERN4 

This book grew out of a short course taught by the authors, 
but is more a reference book than a textbook. It covers a wide 
range from low-speed to hypervelocity impact of projectiles 
against targets, with emphasis on impacts causing damage. 

J. A. Zukas wrote five of the 11 chapters. The first two 
introduce stress waves and some limitations of elementary 
theory. Chapter 5 is a well-illustrated comprehensive treat
ment (with some 160 references) of penetration and per
foration of solids. Experimental methods and approximate 
analyses by force laws are discussed. 

In Chapter 10, Zukas presents an authoritative discussion 
(with 90 references) of numerical simulation of impact 
phenomena. Several remarkable examples of successful 
calculation are reviewed, including spall prediction, ricochet, 
oblique impact by a long-rod penetrator, and the self-forming 
fragment. The last chapter catalogues available three-
dimensional codes (72 references) and closes with a section on 
current developments. The most serious limitation is not cost 
or complexity of numerical simulation, but rather the 
inadequacy of models describing material behavior, especially 
failure models. 

This critical problem of material behavior at high rates is 
addressed by T. Nicholas in Chapter 8, a comprehensive 
review of experimental methods (140 references) at strain 
rates up to about 10,000/sec. The split Hopkinson pressure 
bar or Kolsky aparatus is treated at length. Biaxial testing is 
mentioned, but few high-rate results are available. Rate-
history effects and their modeling are considered. 

At higher rates, inelastic wave analysis is needed to in
terpret the experiments, but this requires assumed constitutive 
properties and leads to an iterative procedure for properties 
determination that may not have a unique solution. Nicholas 
treats elastic-plastic stress waves in Chapter 4 (116 referen
ces). 

Damage in composite materials, caused by low-velocity 
impact, is discussed by L. B. Greszczuk in Chapter 3. A 
theory is developed and applied for elastic impact of two 
bodies of revolution made of transversely isotropic and or-
thotropic materials, including laminated composite targets. 
Failure criteria are proposed, and a few experimentally ob
served failure modes presented. 

Hypervelocity impact mechanics, at velocities where 
strength of projectile and target are sufficiently negligible that 
solids may be considered as fluid, is concisely and clearly 
treated by H. F. Swift in Chapter 6. Launchers include gas 
guns, explosive projectors, and electrical accelerators. 

In Chapter 7 Swift authoritatively discusses cameras and 
related image-forming instruments and presents several in
teresting accounts of ingenious techniques. 
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A chapter on dynamic fracture by D. R. Curran treats 
recent progress in the microstatistical internal state variable 
approach to microvoid kinetics and reports on experimental 
measurements and constitutive modeling of nucleation, 
growth, and coalescence. Applications include fragmenting 
rounds, fracture of geologic materials, and quasi-static ductile 
fracture of metals. 

This is a valuable reference, which every research engineer 
dealing with projectile impact dynamics will want to have. 

Tribological Technology, Vols. I & II. Edited by P. B. 
Senhalzi. Martinus Nijhoff, The Netherlands, 1982. 775 
Pages. Price $109.00. 

REVIEWED BY F. F. LING5 

These volumes constitute the Proceedings of a NATO 
Advanced Study Institute on the subject held in Maratea, 
Italy, 1981. To those interested in applied mechanics, these 
volumes offer a broad view of the field of tribology which 
beckons innovative solutions to relevant, well-posed applied 
mechanics problems. Aside from the Introduction and three 
Appendices, there are 10 Chapters: "Scope of Tribology" by 
H. Czichos of West Germany; "Surface Interaction" by W. 
P. Suh of the United States; "Materials in Tribotechnical 
Applications" by A. W. J. de Gee of The Netherlands; 
"Surfaces" by M. J. Edwards of the U.K.; two chapters on 
"Lubrication" and "Lubricants, respectively, by W. O. 
Winer of the United States; "Contamination in Fluid 
Systems" by E. C. Fitch of the United States; "Tribological 
Failures and Mechanical Design" by M. B. Peterson of the 
United States; "Tribo-Testing" by M. Godet of France; 
"Mon i to r ing" by D. Scott of the U.K.; and 
"Multidisciplinary Approach" by B. R. Reason of the U.K. 

So far as this reviewer knows, all of the chapters are 
reviews. By and large they are well written and the reviews are 
comprehensive. One fine feature of these two volumes is that 
the authors have been given space to sufficiently render 
detailed and quantitative treatment of the subject at hand. 

Returning to this reviewer's earlier claim that the field of 
tribology beckons, examples of solutions sought to mechanics 
problems are: surface mechanics problems with smooth as 
well as nonsmooth surfaces; rheological problems with 
pressure and temperature effects; problems involving complex 
failure mechanisms; problems of fluid flow with entrained 
particulates; problems in nonlinear mechanics; problems 
involving various forms of composites; and problems in
volving interpenetrating continua. 

Constitutive Equations for Engineering Materials, Volume I: 
Elasticity and Modeling. By W. F. Chen and A. F. Saleeb. 
Wiley, New York, 1982, pp. xii-580. price $68.50. 

REVIEWED BY G. J. DVORAK6 

Over the past two decades, rapid advances in numerical 
analysis of engineering structures have stimulated extensive 
research in constitutive modeling of material behavior. Yet, 
few books are available that survey the numerous constitutive 
theories, their experimental verification, and their usefulness 
in applications. This is especially true in the case of complex 
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materials, such as concrete and soils, which are difficult to 
model, but which are frequently encountered in practice. 

The book fills this gap in technical literature. It is written 
primarily for civil engineers both as a graduate textbook and a 
reference book. The work comes in two volumes. The first 
volume deals with elastic, hyperelastic, and hypoelastic 
models. Plasticity will be treated in the second volume. Time-
dependent behavior is not considered. 

The first volume is divided into three self-contained parts. 
Part One on Basic Concepts in Elasticity provides an in
troduction to vectors and tensors, analysis of stress and in
finitesimal strain, and to elastic stress-strain relations. This 
last topic is presented in an elaborate way, with extensive 
expositions of both linear and especially nonlinear theories. 
Uniqueness and stability, and their effect on elastic con
stitutive relations in terms of normality and convexity are 
discussed together with nonlinear isotropic stress-strain 
relations based on strain or complementary energy functions, 
and on modifications of linear models. Incremental 
(hypoelastic, secant moduli, and variable moduli based) 
stress-strain relations are formulated and illustrated by many 
examples. 

Part Two on Concrete Elasticity and Failure Criteria treats 
mechanical behavior, linear and nonlinear elasticity theories, 
failure criteria, and fracture models of concrete. An extensive 
collection of classical and more recent results is presented. 
Four total stress-strain models, and five incremental models 
for nonlinear isotropic and orthotropic concrete materials are 
discussed. Applications of some of the models in finite 
element analysis of concrete structures are illustrated in 
several examples. 

Part Three on Soil Elasticity and Failure Criteria is 
organized in a similar way as Part two. Mechanical behavior, 
failure criteria, and nonlinear elasticity formulations are 
presented. A total stress-strain model, a third-order 
hyperelastic model, and four incremental models are 
discussed and illustrated by examples of their finite element 
applications. 

Each of the three parts is rather self-contained, and the 
book, although well organized, is further divided into seven 
separate chapters, each with its own table of contents. Thus, 
there are altogether eight lists of contents in different 
locations. The material presented is quite diverse due to both 
the depth of the treatment - which includes basic theories, 
experimental data, and examples of applications - and the 
wide range of modeling approaches to deformation, and 
failure of concrete and soils, which the book covers. The 
authors have mastered the difficult task of presenting the 
material well. For the most part, the narrative is clear, the 
theoretical background is reasonably rigorous, and well 
illustrated by many examples. Particularly useful to the 
reader should be the many summaries and conclusions that 
discuss the validity of the numerous constitutive models 
described in the book. 

Proceedings, International Conference on Constitutive Laws 
for Engineering Materials, Theory and Application. Edited by 
C. S. Desai and R. H. Gallagher. January 10-14, 1983, 
Tucson, Ariz. 604 Pages. Price $40.00. 

REVIEWED BY L. B. FREUND7 

This paper-bound volume contains about 100 papers which 
were presented at a conference held in January of 1983, in-
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eluding summaries of 28 invited lectures. The complete texts 
of the invited lectures will appear in a hard-bound volume 
which is in preparation. The papers are divided into seven 
categories: General Theory, Metals and Composites, 
Geological Materials, Discontinuous Media, Concrete, 
Granular Materials and Aggregates, and Implementation and 
Evaluation. The objective of the conference was to stimulate 
interaction between researchers concerned with the theoretical 
and experimental aspects of developing constitutive models of 
deformable solids and those concerned with the im
plementation of constitutive laws in engineering analysis and 
design. 

Many individuals who are active in the field of the con
ference contributed articles and, consequently, the volume 
provides a reasonably complete picture of the current state of 
development of models for describing the mechanical 
behavior of solids. Of course, the volume would be more 
valuable if it contained complete texts of the overview lectures 
as well as the contributed articles. 

Theory of Laminar Flames. By J. D. Buckmaster and G. S. 
S. Ludford. Cambridge University Press, New York, 1982. 
266 Pages. Price $49.50. 

REVIEWED BY H. W. EMMONS8 

A mixture of a gaseous fuel and oxidizer (air) will, if within 
the appropriate composition range, propagate a reaction that 
converts the reactants to products and produces heat and 
light: a flame. The process involves the diffusion of heat and 
reactive chemical specie from the reaction zone to the 
unignited mixture: the feedback of energy and specie. 

The principal obstacle to the progress in the analysis of 
laminar combustion is the usually very complex series of 
chemical reactions needed for even very simple overall 
chemical reactions and the nonlinear' nature of the 
Arrheneous relation for the chemical rate of each of the many 
chemical reactions actually occurring. 

The book under review undertakes the task of introducing 
its readers to the progress that has been made in this analysis 
for very simple hypothetical forward reactions with an ac
tivation energy E in the Arrheneous formula which is very 
large (E/R » T). Under these conditions singular per
turbation methods make it possible to attain solutions with 
considerable rigor and fair accuracy. 

The book begins with a derivation of the required basic 
equations and continues with their application to a series of 
flame spread problems. The study of steady flame phenomena 
is followed by that of slowly varying flames (SVF's) and near 
equidiffusional flames (NEF's). 

The study of nonsteady flames naturally leads to consider 
questions of flame stability under various perturbed con
ditions. 

The calculation of flow fields is discussed in general terms 
but is presented at length for flames as discontinuities and for 
flames in a preassigned approach flow field. There is an 
occasional discussion of various known experimental facts, 
even a few flame photographs. These are used as suggestive of 
the kind of phenomena to be looked for in subsequent 
solutions. Various reasonable-looking flow fields are 
analytically reproduced, but no attempt is made to show their 
quantitative accuracy. 

For anyone who desires to get started on the further 
development of the applied mathematics of problems of the 
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laminar flow of multicomponent reacting gas mixtures, this 
book is superb. Anyone who is already familiar with com
bustion phenomena who desires to acquire a knowledge of the 
present status of the analytic understanding of what happens 
will find this book superior to the slow process of finding, 
critically reading, and absorbing the significance of the large 
number of papers now available. Anyone not familiar with 
combustion phenomena who wants to acquire that familiarity 
and the more physical and important intuitive understanding 
will find this book disappointing. The authors state (for a 
specific problem but generally applicable to the whole book) 
" . . .we regard the models as mathematical idealizations 
whose study can provide some insight into the nature of 
diffusion flames." And again, " . . ., which shows an early 
appreciation of activation-energy asymptotics (though not in 
the formal sense of this monograph)." 

Needless to say, the reviewer made no attempt to check the 
correctness of the 819 equations printed in this book. Only an 
equation, which for some reason appeared to be wrong was 
checked and indeed the text formula for y immediately 
following equation 60 is wrong (7 = \/{\-R/mCp)). 

Boundary Element Methods in Solid Mechanics. By S. L. 
Crouch and A. M. Starfield. Allen & Unwin, Winchester, 
Mass., 1983. 322 Pages. Price $30.00. 

REVIEWED BY F. J. RIZZO9 

The authors are of the opinion that boundary elements 
methods " . . . have not received the attention they 
deserve . . . " compared with finite difference and finite 
element methods. Chief among several reasons for this, in 
their view, is the apparently somewhat "abstruse" character 
of many of the " . . . technical papers on boundary element 
methods." They suggest that the mathematics often used in 
these papers " . . . has prevented many from seeing the simple 
and attractive algorithm that ultimately emerges." 

From this viewpoint, the authors have produced a book in 
which physical interpretation and intuitive reasoning are used 
to the utmost. Indeed, their development is so physical and so 
directed toward a computational scheme that the steps in their 
development may significantly alter whatever previous un
derstanding the reader may have had of the terminology 
"boundary element methods." This terminology, which 
seems well on its way to supplanting the terminology "in
tegral equation methods" or "boundary integral equation 
(BIE) methods," has been, since it was introduced, an un
derstandable choice for obvious reasons. But boundary 
elements always seemed to this reviewer to be at least related 
to integral equations, i.e., as a way of numerically solving 
them. In this book, however, it seems that the concept of an 
integral equation is not at all necessary to introduce, un
derstand, and use boundary element methods. Indeed, in
tegral equations are hardly mentioned until the sixth chapter 
(of eight) where the concept is definitely less important to the 
authors' purpose than that of an influence function. All of 
this strikes thie reviewer as astonishing! Nevertheless, the 
whole development in this book is interesting, lucid, and, no 
doubt, correct for its intended audience and purpose such that 
the expressed astonishment is, in the end, quite pleasant. One 
may disagree on the degree to which physical interpretation in 
such detail is necessary or even helpful in understanding 
boundary elements for one who would not find most of the 
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ERRATA 

Erratum on "Postbuckling Ring Analysis," by L. B. Sills 
and B. Budiansky, and published in the March, 1978 issue of 
the ASME JOURNAL OF ApPLIED MECHANICS, Vol. 45, pp. 
208-210. 

There is a factor-of-two error in the postbuckling coef
ficient "2 calculated for the case of inverse-square loading. 
Equation (26) should read 

"2 = - 999/224 (IS) 

The authors are grateful to Dr. Gaylen A. Thurston (NASA 
Langley) who studied the postbuckling ring behavior 
numerically, discovered disagreement between his results and 
ours, and told us about it; and to J. Mark Duva (graduate 

Journal of Applied Mechanics 

student, Harvard University) who subsequently reanalyzed 
the problem and found the factor-of-two error. The corrected 
value of "2 now provides excellent agreement with Thurston's 
numerical results. 
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